Check for
Updates

Alice: Low-latency Image Live Co-editing via Adaptation

Anlan ZhangT, Stefano Petrangeli¥, Haoliang Wang*, Yu Shen*, Feng Qian™

TUniversity of Southern California

Abstract

Image live co-editing (LCE), which allows users to edit a shared
image concurrently and remotely, is rising in popularity. How-
ever, fluctuating resources (i.e, bandwidth and computation), as
well as varying degrees of edit complexity, make it challenging to
achieve low-latency image live co-editing, which drastically de-
grades the user experience. To address this issue, we propose Alice,
a cross-platform compression adaptation framework that incorpo-
rates three core designs. First, Alice leverages both data-based (i.e.,
sending compressed pixels) and operation-based (i.e., sending image
editing operation APIs and corresponding parameters) approaches
for image edit transmission. Second, Alice combines diverse modern
lossless compression techniques and their various configurations
to enhance the adaptability of data-based transmission. Third, Alice
features a lookup table (LUT)-based decision framework to deter-
mine the best transmission strategy for image edits in real time.
We implement Alice and integrate it into our image LCE testbed.
Our extensive evaluation shows that, compared to the baselines
using a fixed transmission strategy, Alice achieves up to 95% latency
reduction with negligible overhead.

CCS Concepts

« Information systems — Multimedia streaming.

Keywords
Image Live Co-editing, Low Latency, Adaptation, Compression

ACM Reference Format:

Anlan Zhang ", Stefano Petrangeli*, Haoliang Wang*, Yu Shen¥, Feng Qian.
2025. Alice: Low-latency Image Live Co-editing via Adaptation. In The 35th
edition of the Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV °25), March 31-April 4, 2025, Stellenbosch, South
Africa. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3712678.
3721883

1 Introduction

Live co-editing (LCE) applications [14-17] have become crucial for
boosting workplace productivity. Emerging image LCE tools [9],
which are newer and less studied compared to their text-based
counterparts, extend these capabilities to image editing. Ideally,
image LCE tools should possess three essential features to enhance
work flexibility and enable efficient collaboration from anywhere
at any time: lossless information transmission, low-latency inter-
actions, and scalability. However, image LCE systems are still in
their early stages and lack substantial research. This work conducts
a latency-focused study of cloud-based image LCE systems. We

This work is licensed under a Creative Commons Attribution 4.0 International License.
NOSSDAV ’25, Stellenbosch, South Africa

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1469-6/2025/03

https://doi.org/10.1145/3712678.3721883

64

¥ Adobe Research

focus on achieving a low-latency user experience, where latency is
defined as the elapsed time between when a user makes an edit to a
shared image on their local machine and when the edit appears on
the devices of other users.

Many networked multimedia applications, such as real-time com-
munication and video streaming, face similar challenges as those
mentioned above. Existing approaches to reducing end-to-end mul-
timedia transmission latency can be categorized into three main
strategies: (1) Reducing in-network queuing delay. Numerous stud-
ies [31, 41, 43] focus on minimizing queuing delays on the network
side; (2) Adaptive streaming. Adaptive bitrate (ABR) algorithms
are widely used to ensure timely video delivery under fluctuating
bandwidth conditions [25, 34, 40]; and (3) Accelerating compression.
Some studies [38] reduce image compression latency by leveraging
high-performance computing units, such as GPUs.

The above approaches provide benefits but have limitations in
the context of image live co-editing. Reducing in-network queuing
delay can be helpful, but overall latency may still be constrained
by network limitations due to the low compression ratio of lossless
compression. Adaptive streaming relies on lossy compression, which
is incompatible with image LCE’s requirement for lossless com-
pression, limiting its applicability. Accelerating compression through
extensive parallelization demands high on-device computational
power, which may not always be available. Additionally, network
constraints may still impose latency limits due to the restricted
compression ratio of lossless methods.

In this paper, inspired by adaptive video streaming, we achieve
low-latency image live co-editing by incorporating extensive adap-
tation capabilities into the image LCE system. These capabilities are
enabled by various image edit compression and transmission strate-
gies. The key challenge we face, as mentioned above, is that the
commonly used data-based transmission — where the (compressed)
pixel data of an edit is sent to other users - has limited adaptability
due to the mathematical constraints of lossless compression [37].
We address this challenge through the following novel designs.

o Joint Use of Data-based and Operation-based Strategies (§4, §6.1).
Our pilot study on real user image editing patterns (§4) reveals
opportunities to leverage an alternative strategy, referred to as
operation-based, for image edit transmission, where the editing
operation’s metadata (e.g., API and parameters) is sent to other
users, who then “replay” the edit on their local copies. To optimize
image edit transmission, we strategically switch between data-based
and operation-based approaches based on available bandwidth and
computational resources.

o Leveraging Multiple Lossless Compression Techniques with Vari-
ous Configurations (§5, §6.2). Numerous lossless compression tech-
niques have been developed, each exhibiting significant variability
in both compression ratio and efficiency within the context of image
LCE (§5). To enhance the adaptability of data-based transmission,
we strategically combine these techniques and their configurations.

https://doi.org/10.1145/3712678.3721883
https://doi.org/10.1145/3712678.3721883
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3712678.3721883
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712678.3721883&domain=pdf&date_stamp=2025-04-03

NOSSDAV °25, March 31-April 4, 2025, Stellenbosch, South Africa

Server

BE: oooBEE

Figure 1: Cloud-based image LCE system.

® Real-time Strategy Selection (§6.2). We develop a unified lookup
table (LUT)-based approach for rapid selection of the optimal trans-
mission strategy, built through extensive offline profiling.

We implement the above components into Alice, a latency-
aware, cross-platform image edit transmission framework. To eval-
uate Alice, we integrate it into our cloud-based image LCE testbed.
Our extensive trace-driven evaluation (§7) demonstrates that: (1)
Compared to baselines with fixed transmission strategies, Alice
achieves up to 95% per-tile latency reduction, with an average (me-
dian) per-tile latency of 160ms (85ms); (2) Across diverse system
setups (e.g., varying tile resolutions and user counts), Alice consis-
tently outperforms baseline strategies, delivering 28%-85% latency
reduction; and (3) Alice incurs negligible overhead (< 1 ms) on
commodity devices (Ubuntu desktop and MacBook Air 2020).

Our contributions include: (1) To the best of our knowledge,
this is the first study to focus on low-latency image live co-editing,
addressing the problem from a system perspective; (2) The design of
Alice, including its hybrid transmission strategy and the LUT-based
adaptation algorithm; and (3) The implementation, integration, and
thorough evaluation of Alice on our self-developed testbed.

2 Background and Motivation

2.1 Cloud-based Image LCE System

We begin by introducing the cloud-based image LCE system, which
serves as the foundation of this paper. As shown in Figure 1, the sys-
tem consists of a server and multiple clients. All shared images are
initially stored on the LCE server. When a new image LCE session
starts, the server distributes the shared image to all participating
clients. Once users have local copies, they can begin editing. LCE
clients capture user edits on the local image, send these edits to
the server, and apply edits received from the server to their local
copies. The LCE server manages conflicts arising from concurrent
edits by different clients and distributes valid edits to all users. !
The image LCE system transmits image edits by sending their
pixel data over the network, optionally compressed using lossless
techniques. We refer to this approach as data-based transmission.
Specifically, a shared image is spatially segmented into smaller,
non-overlapping tiles, each with a lower resolution (e.g., 512x512,
1024x1024, etc.), and a single channel, unlike the multi-channel
full image. Compression and transmission of image edits occur
on a per-tile basis, involving only the tiles affected by the edit
(e.g., the red area in Figure 1). This design is inspired by viewport-
adaptive streaming in immersive video systems [25, 34], which

'We assume that conflict management is efficient and does not introduce a significant
end-to-end latency bottleneck. Therefore, we do not discuss its details in this paper.

65

A. Zhang et al.

~— 1004
= 754
s o0
] 251

010 25 50 100
Uplink Throughput (Mbps)
Figure 2: CDF of FCC mobile uplink throughput in Jan. 2023 [13].

transmits only the content within the viewer’s viewport to conserve
bandwidth. In the context of image LCE, the area affected by the
edit serves as a conceptual “viewport" for transmission. Our user
study results (§4) further validate this design choice.

2.2 Resource Uncertainty In Image LCE

Achieving consistently low-latency performance in image LCE
systems is challenging, especially in mobile use cases, due to the
following factors: (1) Unreliable wireless communication: Mobile
networks are inherently unstable, with frequent oscillations and
reliability issues across all available infrastructures [26, 27, 30, 45].
For example, Figure 2 presents the FCC’s mobile broadband uplink
throughput distribution in 10 major U.S. cities (January 2023) [13].
The average and median throughputs are 11.41 Mbps and 8.95
Mbps, respectively, with a standard deviation of 11.54 Mbps. For
90% of the time, uplink throughput remains below 25 Mbps; (2)
Heterogeneous computational resources: Image LCE clients run
on diverse platforms (e.g., laptops, tablets, and web), leading to
significant variations in computational capabilities; and (3) Varying
complexities of image editing operations: Image edits differ widely
in computational intensity, making it difficult to design a one-size-
fits-all solution. These motivates us to enhance the adaptability of
image LCE systems to better cope with varying resource constraints.

3 Alice Oveview

Alice is a cross-platform adaptation framework designed for low-
latency image live co-editing. It offers two key features: (1) a com-
bined use of data-based and operation-based image edit transmission
approaches (84, §6.1), and (2) real-time selection of the transmission
strategy (§6.2). Figure 3 illustrates the workflow of Alice, with most
components operating on the client side. In an image LCE session,
user edits are encoded using Alice ’s image edit codec before being
transmitted to other users, who then decode and apply them to
the shared image. The strategy scheduler determines the compres-
sion configuration based on resource estimates (i.e., bandwidth and
computation) provided by the resource monitor. The Alice server
forwards valid image edits (after conflict management) to users.

4 Understanding Real User’s Image Editing
Pattern: A Pilot Study

We conduct a user study with three objectives: (1) understand real
user image editing patterns, (2) validate the tile-based image edit
transmission design outlined in §2.1, and (3) provide additional
insights for image LCE system design.

4.1 Methodology

The high-level methodology of our user study is to have participants
complete a series of pre-defined image editing tasks on various pre-
defined images. We use a professional image editing tool to log
users’ operations and edits. Due to the complexity of implementing

Alice: Low-latency Image Live Co-editing via Adaptation

Alice Server I

b}

B7 Cross-platform ™

@ Offline Profiling
Lookup Tables:

1
1| Message
1

- ——

Ars— ==, === Forwarder

IA|.I.Ce) Strategy L;Eh 1 o e - ——d

yctient Flscheduler=Qf ! Alice

I ! ! 1 == | Client
Resource @) Image Edit Codec |1 -

H Mo |,|E B I Alice

 Ltonitor s | I[Enconer [oecoger]] 3 ™4 cien

—_— Alice

Image Edit Data Client

Control Data

Igl Ewi

Figure 3: The system architecture of Alice.

a professional-grade image live co-editing tool, this study focuses
on analyzing the editing patterns of individual users instead. As
shown in the previous section, these results remain valuable as they
provide insights into the editing behavior of professional creators,
which, in turn, inform the design of our Alice system. Additionally,
we exclude generative Al-based image editing operations [33].

4.2 Results & Insights

We collect a total of 19,819 image edits performed by seven par-
ticipants using 143 distinct image editing operations with diverse
parameters. We then present our analysis results and insights.

Frequencies of Image Editing Operations. Figure 4 presents
the frequencies of image editing operations, highlighting the 10
most common actions. We derive two key insights from these re-
sults. First, a significant portion of image editing operations impose
minimal computational overhead on the host machine, such as
Layer Visibility. This suggests that instead of relying on data-based
transmission strategy, image LCE systems can transmit only the
operation API and parameters, which typically require far less band-
width than pixel data. Other users can then replicate the edit by
replaying the operation locally with the received parameters — an
approach we refer to as operation-based transmission. Second, cer-
tain image editing operations, such as Patch Selection, do not alter
image pixels and therefore do not require transmission.

Resolutions of Image Edits. To analyze the area sizes affected
by image edits, we define a set S consisting of 7 resolutions: S =
{1282 256% 384% 512%,1024%, 20482, 4096 }. The resolution of an
image edit is determined as the smallest resolution in S that fully
encompasses the edit. Our findings show that the two most common
resolutions among collected image edits are 1024 and 384 In
addition, the average height and width of these edits are 660 x 660
pixels. These results validate the tile-based image edit transmission
design in basic image LCE systems (see §2.1).

Complexity of Image Edit Tiles. We analyze the complex-
ity of collected image edit tiles and find that they are mathemati-
cally “simpler” than regular image tiles of the same resolution. The
complexity of an image edit can be quantified by its entropy [37],
measured as the proportion of data size reduction after lossless com-
pression. To investigate this, we segment image edits into tiles as de-
fined in §2.1, focusing on four resolutions: {1282, 2562, 5122, 10242}.
We randomly sample 1,000 image edit tiles at each resolution and
compare their complexity to an equal number of regular image
tiles, sampled from our custom dataset (discussed in §5.1). We use

Spot Healing Brush

66

Healing Brush
Patch Selection

Layer Visibility

NOSSDAV °25, March 31-April 4, 2025, Stellenbosch, South Africa

Brush Tool 1
Eraser
Mixer Brush

Regular Imagesl—lImage Edits

=
:

RS
o S S
i

Clone Stamp
Paint Bucket

bk L

1282 2567 5122 10242
Tile Resolution (pixels)

Burn Tool

Tile Entropy (%)

Others {55) J
1 3 10
Operation Frequency (%)
Figure 4: The operation fre-
quency in our user study.

50

Figure 5: The tile entropy of
regular image and image edits.

PNG [35] for lossless compression. As shown in Figure 5, the aver-
age entropy of image edit tiles at 1282, 2562, 5122, and 1024° is lower
than that of regular image tiles at the same resolutions by 43.13%,
42.74%, 43.46%, and 43.01%, respectively. These results confirm the
simplicity of image edit tiles. Our key insight is that, given the in-
herent simplicity of image edit tiles, there are ample opportunities
to reduce end-to-end latency by employing less complex compression
techniques or configurations. This can significantly accelerate lossless
compression while maintaining the compression ratio.

5 Lossless Compression For Image LCE

Many lossless compression techniques [18, 19, 22, 35, 36, 39] have
been developed, yet none has been specifically investigated in the
context of image live co-editing. We evaluate their performance
using a comprehensive dataset we collected. We collect a sepa-
rate dataset instead of reusing the one from §4 because we aim to
investigate a broader range of image types.

5.1 Frameworks, Dataset & Methodology

Lossless Compression Frameworks. We explore three frame-
works: a general-purpose lossless data compression framework,
zlib [36], and two dedicated image compression frameworks, PNG [35]
and JPEG XL [18]. The reference implementations used are zlib-
1.3.1 [12], libpng-1.6.43 [5], and libjx1-0.10.0 [4]. These frameworks
offer 10, 2, and 10 configurations, respectively, to balance compres-
sion ratio and efficiency. In total, we examine 20 configurations:
9 from zlib, 2 from PNG, and 9 from JPEG XL. We exclude one
zlib configuration that performs no compression and one JPEG XL
configuration due to excessively long compression times.

Image Tile Dataset. We construct a comprehensive image tile
dataset by randomly sampling a subset from multiple popular pub-
lic image datasets [2, 3, 6, 10, 11, 20, 21, 23, 29]. This results in 881
images with diverse resolutions, categories, and complexities, in-
cluding photographic images, photorealistic images, artistic images,
Al-generated images, and simple binary masks. Each image is then
divided into tiles according to the definition in §2.1. We consider
four tile resolutions: {1282, 25625122, 10242}. For each resolution,
we get 183K+, 47K+, 12K+, and 3K+ tiles, respectively.

Methodology. We evaluate the compression ratio and com-
pression latency (encoding + decoding) of the above frameworks
with our dataset, using a single CPU thread on a MacBook Air
M1 2020 [7]. We consider both native and web (WebAssembly
(Wasm) [24]) applications. Internal parallelism in compression en-
gines is disabled, if available.

NOSSDAV °25, March 31-April 4, 2025, Stellenbosch, South Africa

A. Zhang et al.

°z]l mz2 ©z3 vz4 az5 «4z6 » 27 v28 +z9 <pl »p2 ojl mj2 @3 #j4 xj5 ¢j6 @7 +j8 %9
§§88 m? oo X g @ +*ee <] * FROD +X * X800 X
S~ rrl a 1
E_Q QI
£ 8 507 o 1o 1 1wt v
80145—*‘ (Y 1Ry R L2l

100 100 102 108 100 102 10° 100 102 103 10* 102 10° 107

Compression Latency (ms)
Figure 6: Average compression (encoding + decoding) ratio/latency of zlib (z1-9), PNG (p1-2), and JPEG XL (j1-9) under various image tile

resolutions (left to right): 128, 2562, 5122, 10242,

Bandwidth | Cmpr Cmpr -
Latency | Ratio Op1 Params | Execution
Config Speed
0-B1
OpID | Sub-LUT, Config 1
B1-B2
1 Config 2
B2-B3
default
>Bn
datalLUT opLUT

Figure 7: An example of the dataLUT and opLUT of Alice.

5.2 Compression Performance

Figure 6 presents the benchmark results across diverse tile resolu-
tions. We derive four key takeaways: (1) zlib-{1-6} demonstrate a
good trade-off between compression ratio and latency. However,
from zlib-6 to zlib-9, improvements in compression ratio become
marginal, while compression latency increases significantly; (2) The
two PNG configurations exhibit notable differences in both com-
pression ratio and latency; (3) JPEG XL-{1-3} provide a reasonable
trade-off between compression ratio and latency. In contrast, JPGE
XL-{4-9} incur a substantial increase in compression latency with
only minimal gains in compression ratio; and (4) More importantly,
the significant heterogeneity among all configurations presents oppor-
tunities for image LCE systems to select compression configurations
at runtime to adapt to varying resource constraints.

6 System Design

We now present the system design of Alice, as illustrated in Figure 3.

6.1 Hybrid Transmission Strategies

Alice combines data-based and operation-based approaches for im-
age edit transmission. In data-based transmission, pixel data from
an image edit is sent from one user to others, with or without loss-
less compression. In operation-based transmission, Alice transmits
the metadata of the operation (e.g., API and parameters) from one
user to others, who then replicate the edit by replaying the oper-
ation locally with the received parameters. This hybrid approach
introduces a system compatibility challenge for Alice, which stems
from two key issues. First, clients in a live co-editing session may
have different sets of image operations due to varying application
versions (e.g., across operating systems) or platform resources (e.g.,
native vs. web applications, laptop vs. tablet). Second, many image
editing operations rely on specific graphic assets or presets [1],
which may not be publicly available. As a result, blindly adopting
the hybrid transmission strategy without precautions may lead
to transmission failures due to operation incompatibility or miss-
ing graphic assets. To address this challenge, Alice enforces two
policies: (1) operation-based transmission is restricted to common
operations that are supported across all variants of the image LCE
application. These operations can be negotiated at the start of an

67

editing session between remote clients; and (2) the Alice client mon-
itors the graphic assets used in each editing operation and switches
to data-based transmission whenever private assets are involved.

6.2 Real-time Strategy Selection

Alice must solve a discrete optimization problem in real time to de-
termine the optimal transmission strategy for image edits. This prob-
lem involves a large search space, including: (1) selecting between
the operation-based and data-based approaches, and (2) choosing
from all available configurations of the data-based approach. There
are three additional challenges: (1) measuring the exact end-to-end
latency of each configuration through actual execution is impracti-
cal, as it would require redundant transmissions of the same image
edit; (2) the selection algorithm must be fast to prevent additional
latency overhead; and (3) each LCE client must be aware of available
resources on other clients to optimally solve the problem.
Inspired by FastMPC [46], Alice overcomes these challenges by
efficiently selecting the optimal compression strategy at runtime us-
ing an LUT-based approach. Each Alice client maintains two LUTs:
dataLUT for the data-based approach and opLUT for the operation-
based approach. As shown in Figure 7, dataLUT is indexed by net-
work bandwidth and provides the predicted optimal data-based
compression configuration along with its associated compression
latency and ratio. opLUT is a two-level LUT: the first level is in-
dexed by the operation ID, which accesses a sub-LUT for each image
operation. The sub-LUT is indexed by specific parameters to predict
execution speed based on those parameters. At runtime, for each
image edit, Alice: (1) predicts data-based transmission latency by
querying compression latency and ratio from the dataLUT, using
the latest bandwidth estimate, (2) forecasts operation-based trans-
mission latency by combining operation execution speed from the
opLUT, size of the operation parameters, and estimated bandwidth,
and (3) selects the strategy with the lowest predicted latency for
the image edit. Each {platform, tile resolution} combination has its
own dataLUT and opLUT, which are constructed offline through
extensive performance profiling and enumeration, making this a
one-time setup. Next, we detail the LUT construction process.
Constructing the dataLUTs. Alice builds a dataLUT in two
steps. First, it profiles the compression ratio and latency of all con-
sidered compression techniques across various configurations. This
profiling follows the methodology in §5, using a comprehensive im-
age tile dataset. Next, Alice enumerates possible bandwidth values
and selects the compression configuration that minimizes latency
for each bandwidth. The latency of each configuration is estimated
using back-of-the-envelope calculations based on the average com-
pression ratio and latency obtained in the first step. To optimize
the dataLUTs, Alice applies several trimming strategies: (1) Initially,

Alice: Low-latency Image Live Co-editing via Adaptation

it profiles all configurations on a dataset subset before constructing
the full dataLUT. It discards configurations with high compression
latency and limited compression ratio improvement, such as zlib-{7-
9} and JPEG XL-{7-9}, as shown in Figure 6; (2) Configurations that
consistently perform worse than others are removed; and (3) In-
stead of enumerating all possible bandwidth values, Alice identifies
a bandwidth range where each configuration performs optimally.
Higher bandwidth requires less compression effort for image edits,
making this range easily to be identified.

Building the opLUTs. The opLUTs are constructed through
extensive offline measurements of various image editing opera-
tions, with two key differences from dataLUTs. First, Alice does
not enumerate bandwidth values for opLUTs. Instead, it predicts
operation-based transmission latency at runtime. Second, image
editing operations can have infinite possible parameter values, un-
like the finite configurations in data-based transmission. Profiling
every parameter set is impractical. To address this, Alice profiles
a subset of frequently used parameters, which may include the
top-k most common parameters identified from large-scale user
studies. This subset is dynamically updated as Alice collects more
user operation data. In addition, each operation’s LUT includes a
default entry, which provides the average execution speed across
all profiled parameter sets. If a query does not match a specific
entry, Alice returns this default value. We empirically set k to 20
to ensure fast table lookup, resulting in an opLUT size of ~2MB
(assuming 1,000 operations and each entry takes 100 Bytes).

7 Implementation & Evaluation

Our implementation consists of: (1) an image LCE system fol-
lowing the architecture in Figure 1, comprising 2,182 lines of code
(LoC), and (2) the Alice framework (Figure 3) with 2,777 LoC, inte-
grated into the LCE system. Both components are implemented in
C/C++. We develop a simple message-oriented protocol over TCP
for communication between the server and clients. For data-based
transmission, Alice applies zlib-1.3.1 [12], libpng-1.6.43 [5], and
libjx1-0.10.0 [4] with configurations 1-6, 1-2, and 1-3, respectively.

7.1 Experimental Setup

Controlled Experiments. We conduct trace-driven evaluations,
where each image LCE client is assigned an image editing trace, an
uplink throughput trace, and a downlink throughput trace.

Image Editing Traces. Each data point in an editing trace in-
cludes operation metadata (API and parameters), capturing time,
and affected pixels and their values. To generate image editing
traces, we first create an operation set with 20 image processing
operations from OpenCV-4.9.0 [8]. We consider 4 trace durations:
60, 120, 180, and 240 seconds, and synthesize 20 traces per dura-
tion: For a t-second trace, we first determine the total number of
operations n (n < t), randomly sampled from our operation set.
The capturing time for the n operations are uniformly sampled
from [0, ¢]. Then, for each operation, we randomly select an area
from an image in our dataset, apply the operation to that area, and
record the modified pixels along with their values. The operation
parameters are randomly generated.

Network Traces. We sample network traces from the FCC mo-
bile broadband dataset (January 2023) [13] and replay them using

68

NOSSDAV °25, March 31-April 4, 2025, Stellenbosch, South Africa

Baseline | Transmission Compression
op operation-based N/A
data data-based Dynamic configuration
raw data-based No compression
zlib3 data-based zlib-3 in §5.1
pngl data-based PNG-11in §5.1
Jjxl1 data-based JPEG XL-1 in §5.1

Table 1: Comparison baselines in our experiments.

Mahimahi [32]. We use 20 uplink traces and 20 downlink traces.
The average uplink throughput ranges from 10.21 to 12.34 Mbps,
with a standard deviation of 10.25 to 13.02 Mbps. The average down-
link throughput ranges from 64.47 to 73.51 Mbps, with a standard
deviation of 59.38 to 76.15 Mbps.

Devices, Dataset, and Other Configurations. We use an
Ubuntu 18.04 desktop (64-GB memory, Intel Core i9-10900X CPU @
3.70GHz) as the LCE server. LCE clients run on two difference plat-
forms, evenly distributed: an Ubuntu 20.04 desktop (32-GB memory,
Intel Core i7-9700K CPU @ 3.60GHz) and a MacBook Air 2020
laptop. We randomly select 100 images from our dataset (§5.1) for
evaluation and consider diverse tile resolutions (5122 and 10242) and
client scales (2, 4, 6, 8, and 10 clients).

Baselines. We consider 6 baselines, summarized in Table 1: (1)
op applies only the operation-based approach; (2) data applies only
the data-based approach with online configuration selection; and
(3) 4 data-based baselines with fixed configuration: raw applies
no compression, zlib3 uses zlib configuration 3, pngl uses PNG
configuration 1, and jxII uses JPEG XL configuration 1.

Metrics. We evaluate Alice in terms of the per-tile end-to-end
latency and its overhead. Per-tile latency is defined as the elapsed
time between when an image edit on a tile is captured and when
the tile is displayed on the other client’s device. We focus on per-
tile latency because, in our prototype, tiles are compressed and
transmitted sequentially, making per-tile latency a reasonable ap-
proximation of per-edit latency. All results are reported across all
images, traces, network traces, and clients.

7.2 End-to-end Performance of Alice

Alice vs. Baselines. We first compare Alice with the baselines in
Table 1, considering 2 LCE clients with a tile resolution of 1024%.
Figure 8 shows our result. We have three takeaways. First, compared
to raw, zlib3, png1, and jxl1, data reduces the average (median) per-
tile latency by 90.44% (49.91%), 78.16% (9.62%), 78.30% (11.27%), and
75.31% (20.42%), respectively, thanks to the dynamic compression
configuration selection at runtime, which adapts to the varying
bandwidth better, compared to using a fixed configuration. Second,
compared to data and op, Alice further reduces the average (median)
latency by 62.03% (28.34%) and 66.72% (79.09%), respectively. This
confirms the effectiveness of jointly using data-based and operation-
based approaches. Third, the average (median) per-tile latency of
Alice is 160.18ms (85.01ms), which is a 95.48% (70.18%), 91.85%
(60.55%), 91.49% (62.21%), and 93.17% (71.65%) reduction compared
to raw, zIlib3, png1, and jxl1, respectively.

Various Tile Resolution. We repeat the evaluation with a tile
resolution of 5122. As shown in Figure 9: (1) compared to raw, zlib3,
pngl, and jxl1, data reduces the average (median) per-tile latency by
90.44% (49.91%), 78.16% (9.62%), 78.30% (11.27%) and 75.31% (20.42%),
respectively; (2) compared to data or op, Alice further reduces the

NOSSDAV °25, March 31-April 4, 2025, Stellenbosch, South Africa

A. Zhang et al.

Figure 8: Per-tile latency of different strategies.
Tile resolution is 1024%. # of clients is 2.
average (median) per-tile latency by 62.03% (28.34%) and 66.72%
(79.02%), respectively; and (3) the average (median) per-tile latency
of Alice is 115.06ms (58.87ms). This result confirms Alice’s effec-
tiveness under various tile resolutions.

Diverse Client Scales. We vary the number of LCE clients from
2 to 10, and compare Alice with op and data in Table 1. Figure 10
shows that when the number of clients is 2, 4, 6, 8, and 10, Alice con-
sistently outperforms the baselines: (1) the average (median) per-tile
latency of Alice is 160.18ms (85.01ms), 169.62ms (85.02ms), 155.36ms
(84.52ms), 178.99ms (85.00ms), and 177.35ms (82.57ms), respectively;
(2) Compared to data, Alice reduces the average (median) latency by
83.68% (60.13%), 82.60% (65.07%), 84.70% (62.79%), 81.01% (66.08%),
and 76.40% (68.88%), respectively; (3) Compared to op, Alice reduces
the average (median) latency by 52.59% (63.49%), 49.80% (63.71%),
54.00% (63.90%), 47.04% (63.72%), and 47.50% (64.64%), respectively.
This result confirms the scalability of Alice.

7.3 Micro-benchmarks

LUT-based vs. ML-based Selection. We compare the LUT-based
strategy selection with a machine learning-based approach (Alice-
ML). Specifically, we formulate strategy selection as a classification
problem, where a machine learning model predicts the optimal
strategy based on: device type ID, tile resolution, operation ID, and
bandwidth estimation. Using an offline-collected dataset, we inves-
tigate 4 lightweight ML models: Logistic Regression (LR), Random
Forest (RF), Gradient Boosting Decision Tree (GBDT), and Multi-
layer Perceptron (MLP). We implement these models using Python’s
scikit-learn package with default parameters. Table 2 shows their
prediction accuracy through 10-fold cross-validation, where GBDT
achieves the best performance. We then integrate the pre-trained
GDBT model into Alice-ML and compare its performance with Alice.
We set the tile resolution to 1024 and the number of clients to 2.
Figure 11 shows that Alice outperforms Alice-ML, reducing average
(median) latency by 81.83% (56.91%). The likely reason for Alice’s
superior performance is the limited scale of the training dataset and
the lack of fine-tuning in the ML model. Nevertheless, this result
demonstrates the feasibility of ML-based solutions as an alternative
approach for dynamic configuration selection, which we plan to
further explore in future work.

Alice Overhead. We confirm that Alice incurs negligible over-
head (<1ms) for transmission strategy selection on our test devices.

8 Related Work

Reducing Network-side Delay. Extensive research has focused on
reducing network-side latency for various applications [31, 41, 43].
Zhuge [31] reduces tail latency in wireless real-time communication
(RTC) applications by proactively predicting network delay for

Figure 9: Per-tile latency of different strategies.
Tile resolution is 512, # of clients is 2.

69

T X " Median 2 Mean T 3000F &~ Median & Mean — — Median 4 Mean[Z] Alicel| op[Z] data
¢ .3000 S ®_1000{ & & A h
TE000{ & a * 3 E20000 SE T0r T b b A
EglOOOQ = A LEQ’IOOO T * E@gggTAB TAB TAB TAB EAE
=2 100 =aEEmea s E%lool;l—é-%“‘é+ o5 ool AN 00 MO0 &

5 - raw zlib3pngl jxI1 op dataAlice 5 - raw zlib3pngl jxI1 op dataAlice }: S 2 2 6) 10
a Image Edit Transmission Strategy Q- Image Edit Transmission Strategy @ # of Image LCE Clients

Figure 10: Per-tile latency with various # of
clients. Tile resolution is 1024°.

Model | Accuracy - — Median 4 Mean
LR 51.64 iz S
2 E
RF 55.91 T i
>
GBDT | 6176 b g
MLP 52.13 F& A
Table 2: Prediction accuracy 3 Alce Alice-ML
of explored ML models. Figure 11: Alice vs. Alice-ML. The

tile resolution is set to 10242,

each RTC packet and adjusting the packet sending rate accordingly.
TwinStar [43] achieves low-latency video delivery by leveraging
multiple network paths simultaneously, mitigating network jitter
over a single path. Tan et al. [41] propose a data-driven LTE latency
reduction framework for latency-sensitive mobile applications by
analyzing operational LTE traces.

Adaptive Streaming. Adaptive bitrate (ABR) streaming is widely
adopted in modern multimedia systems [25, 34, 40, 42, 47, 48], from
2D videos to immersive content. The core concept is to encode multi-
media content at multiple quality levels and stream the highest pos-
sible quality that matches the current network bandwidth [40, 47],
ensuring timely delivery before the playback deadline. Some im-
mersive video streaming systems [25, 34] adopt visibility-adaptive
streaming, transmitting only content visible to the viewer. Machine-
oriented systems, such as connected autonomous vehicles [49] and
video analyst systems [28], dynamically adjust encoding parameters
to adapt to fluctuating network conditions.

Optimizing Lossless Compression. A wide range of lossless
compression techniques [18, 19, 22, 35, 36, 39] have been devel-
oped over the past decades. In addition, research has focused on
accelerating existing frameworks [38, 44]. Wu et al. [44] propose
an entropy-guided, content-aware pixel prioritization strategy to
enhance the progressive compression performance of FLIF [39].
Shen et al. [38] optimize FLIF by leveraging GPU parallelism to
accelerate compression. These studies are orthogonal to our work.

9 Concluding Remarks

This paper focuses on achieving low-latency image live co-editing.
We demonstrate that by jointly utilizing data-based and operation-
based strategies and integrating diverse lossless compression tech-
niques and configurations, an image LCE system can achieve up
to 95% latency reduction compared to baselines. We believe that
our high-level design concept can also benefit human-machine
co-editing applications in the Generative Al era.

Acknowledgments

We thank the anonymous reviewers for their insightful comments.
This work was supported in part by NSF Award CNS-2402991, CNS-
2409267, and CNS-2409269.

Alice: Low-latency Image Live Co-editing via Adaptation

References

[1] Create or delete presets. https://helpx.adobe.com/photoshop-elements/prereleas
e/create-save-edit-delete- presets.html.

[2] Ieee mmsp 2020 challenge: Learning-based image coding challenge test images.
https://jpegai.github.io/test_images/.

[3] Kodak lossless true color image suite. https://rOk.us/graphics/kodak/.

[4] libjxl v0.10.0. https://github.com/libjxl/libjxl/archive/refs/tags/v0.10.0.zip.

[5] libpng v1.6.43. https://github.com/pnggroup/libpng/releases/tag/v1.6.43.

[6] Lossless compression software for camera raw images. https://imagecompressi
on.info/.

[7] Macbook air (m1, 2020) - technical specifications. https://support.apple.com/en-
us/111883.

[8] Opencv 4.9.0. https://github.com/opencv/opencv/releases/tag/4.9.0.

[9] Photoshop Unlocks Creative Collaboration with Live Co-Editing.
https://blog.adobe.com/en/publish/2025/01/14/photoshop-unlocks-creative-
collaboration-with-live- co-editing-join-private-beta.

[10] Unsplash dataset. unsplash.com/data.

[11] Wikiart dataset. https://huggingface.co/datasets/huggan/wikiart/.

[12] =zlib 1.3.1 release. https://github.com/madler/zlib/archive/refs/tags/v1.3.1.zip.
[13] Measuring broadband america mobile data. https://www.fcc.gov/reports-
research/reports/measuring-broadband-america/measuring-broadband-

america-mobile-data, 2023.

[14] Facet: Photo editor. https://facet.ai/photo-editor, 2024.

[15] Figma: The collaborative interface design tool. https://www.figma.com/, 2024.

[16] Google docs: Online document editor. https://www.google.com/docs/about/,
2024.

[17] Overleaf, online latex editor. https://www.overleaf.com/, 2024.

[18] J. Alakuijala, R. Van Asseldonk, S. Boukortt, M. Bruse, I.-M. Comsa, M. Firsching,
T. Fischbacher, E. Kliuchnikov, S. Gomez, R. Obryk, et al. Jpeg xI next-generation
image compression architecture and coding tools. In Applications of digital image
processing XLII, volume 11137, pages 112-124. SPIE, 2019.

[19] U. Albalawi, S. P. Mohanty, and E. Kougianos. A hardware architecture for
better portable graphics (bpg) compression encoder. In 2015 IEEE international
Symposium on Nanoelectronic and information systems, pages 291-296. IEEE, 2015.

[20] N. Asuni and A. Giachetti. Testimages: A large data archive for display and
algorithm testing. Journal of Graphics Tools, 17(4):113-125, 2013.

[21] N. Asuni and A. Giachetti. Testimages: a large-scale archive for testing visual
devices and basic image processing algorithms. In STAG, pages 63-70, 2014.

[22] M. Calore. Meet webp, google’s new image format, 2010.

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248-255. leee, 2009.

[24] A.Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner,
A. Zakai, and J. Bastien. Bringing the web up to speed with webassembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 185-200, 2017.

[25] B. Han, Y. Liu, and F. Qian. Vivo: Visibility-aware mobile volumetric video
streaming. In Proceedings of the 26th annual international conference on mobile
computing and networking, pages 1-13, 2020.

[26] A.Hassan, A. Narayanan, A. Zhang, W. Ye, R. Zhu, S. Jin, J. Carpenter, Z. M.
Mao, F. Qian, and Z.-L. Zhang. Vivisecting mobility management in 5g cellular
networks. In Proceedings of the ACM SIGCOMM 2022 Conference, pages 86100,
2022.

[27] B.Hu, X. Zhang, Q. Zhang, N. Varyani, Z. M. Mao, F. Qian, and Z.-L. Zhang. Leo
satellite vs. cellular networks: Exploring the potential for synergistic integra-
tion. In Companion of the 19th International Conference on emerging Networking
EXperiments and Technologies, pages 45-51, 2023.

[28] S.Kim, K. Bin, D. Yang, S. Ha, S. Chong, and K. Lee. Entro: Tackling the encoding
and networking trade-off in offloaded video analytics. In Proceedings of the 31st
ACM International Conference on Multimedia, pages 9115-9123, 2023.

[29] M. Ku, T. Li, K. Zhang, Y. Lu, X. Fu, W. Zhuang, and W. Chen. Imagenhub:
Standardizing the evaluation of conditional image generation models. arXiv
preprint arXiv:2310.01596, 2023.

[30] Y.Li, H.Lin, Z.Li, Y. Liu, F. Qian, L. Gong, X. Xin, and T. Xu. A nationwide study
on cellular reliability: Measurement, analysis, and enhancements. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, pages 597-609, 2021.

[31] Z. Meng, Y. Guo, C. Sun, B. Wang, J. Sherry, H. H. Liu, and M. Xu. Achieving
consistent low latency for wireless real-time communications with the shortest
control loop. In Proceedings of the ACM SIGCOMM 2022 Conference, pages 193-206,
2022.

[32] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens, and H. Bal-
akrishnan. Mahimahi: accurate {Record-and-Replay} for {HTTP}. In 2015
USENIX Annual Technical Conference (USENIX ATC 15), pages 417-429, 2015.

[33] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Miiller, J. Penna,

and R. Rombach. Sdxl: Improving latent diffusion models for high-resolution
image synthesis. arXiv preprint arXiv:2307.01952, 2023.

70

[40

[41

[42]

[43]

[45

[46

[49

NOSSDAV °25, March 31-April 4, 2025, Stellenbosch, South Africa

F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare: Practical viewport-adaptive
360-degree video streaming for mobile devices. In Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, pages 99-114,
2018.

G. Roelofs. PNG: the definitive guide. O’Reilly & Associates, Inc., 1999.

G. Roelofs. zlib: A massively spiffy yet delicately unobtrusive compression library.
http://www. zlib. net/, 2017.

C. E. Shannon. A mathematical theory of communication. The Bell system
technical journal, 27(3):379-423, 1948.

Y. Shen, G. Wu, V. Swaminathan, H. Wang, S. Petrangeli, and T. Yu. Gpu-
accelerated lossless image compression with massive parallelization. In 2023
IEEE International Symposium on Multimedia (ISM), pages 321-324. IEEE, 2023.
J. Sneyers and P. Wuille. Flif: Free lossless image format based on maniac com-
pression. In 2016 IEEE international conference on image processing (ICIP), pages
66-70. IEEE, 2016.

L. Sodagar. The mpeg-dash standard for multimedia streaming over the internet.
IEEE multimedia, 18(4):62-67, 2011.

Z.Tan, J. Zhao, Y. Li, Y. Xu, and S. Lu. {Device-Based}{LTE} latency reduction
at the application layer. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21), pages 471-486, 2021.

C. Wang, A. Zhang, Y. Yang, L. Qiu, Y. Yang, X. Jiang, F. Qian, and S. Banerjee.
Volut: Efficient volumetric streaming enhanced by lut-based super-resolution.
arXiv preprint arXiv:2502.12151, 2025.

H. Wang, Z. Yu, R. Zhang, S. Tao, H. Yu, and S. Shi. Twinstar: A practical multi-
path transmission framework for ultra-low latency video delivery. In Proceedings
of the 31st ACM International Conference on Multimedia, pages 9234-9242, 2023.
J. Wu, H. Wang, T. Yu, G. Wu, S. Petrangeli, H. Zhao, S. Kim, and V. Swami-
nathan. Content-aware progressive image compression and syncing. In 2023
IEEE International Symposium on Multimedia (ISM), pages 221-224. IEEE, 2023.
R. Xing, M. Xu, A. Zhou, Q. Li, Y. Zhang, F. Qian, and S. Wang. Deciphering
the enigma of satellite computing with cots devices: Measurement and analysis.
arXiv preprint arXiv:2401.03435, 2024.

X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-theoretic approach for
dynamic adaptive video streaming over http. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, pages 325-338,
2015.

A. Zhang, C. Wang, B. Han, and F. Qian. {YuZu}:{Neural-Enhanced} volumetric
video streaming. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 137-154, 2022.

A. Zhang, C. Wang, Y. Hu, A. Hassan, Z. Zhang, B. Han, F. Qian, and S. Xu.
Habitus: boosting mobile immersive content delivery through full-body pose
tracking and multipath networking. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24), pages 1677-1695, 2024.

X. Zhang, A. Zhang,]. Sun, X. Zhu, Y. E. Guo, F. Qian, and Z. M. Mao. Emp: Edge-
assisted multi-vehicle perception. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking, pages 545-558, 2021.

https://helpx.adobe.com/photoshop-elements/prerelease/create-save-edit-delete-presets.html
https://helpx.adobe.com/photoshop-elements/prerelease/create-save-edit-delete-presets.html
https://jpegai.github.io/test_images/
https://r0k.us/graphics/kodak/
https://github.com/libjxl/libjxl/archive/refs/tags/v0.10.0.zip
https://github.com/pnggroup/libpng/releases/tag/v1.6.43
https://imagecompression.info/
https://imagecompression.info/
https://support.apple.com/en-us/111883
https://support.apple.com/en-us/111883
https://github.com/opencv/opencv/releases/tag/4.9.0
https://blog.adobe.com/en/publish/2025/01/14/photoshop-unlocks-creative-collaboration-with-live-co-editing-join-private-beta
https://blog.adobe.com/en/publish/2025/01/14/photoshop-unlocks-creative-collaboration-with-live-co-editing-join-private-beta
unsplash.com/data
https://huggingface.co/datasets/huggan/wikiart/
https://github.com/madler/zlib/archive/refs/tags/v1.3.1.zip
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-broadband-america-mobile-data
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-broadband-america-mobile-data
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-broadband-america-mobile-data
https://facet.ai/photo-editor
https://www.figma.com/
https://www.google.com/docs/about/
https://www.overleaf.com/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Cloud-based Image LCE System
	2.2 Resource Uncertainty In Image LCE

	3 Alice Oveview
	4 Understanding Real User's Image Editing Pattern: A Pilot Study
	4.1 Methodology
	4.2 Results & Insights

	5 Lossless Compression For Image LCE
	5.1 Frameworks, Dataset & Methodology
	5.2 Compression Performance

	6 System Design
	6.1 Hybrid Transmission Strategies
	6.2 Real-time Strategy Selection

	7 Implementation & Evaluation
	7.1 Experimental Setup
	7.2 End-to-end Performance of Alice
	7.3 Micro-benchmarks

	8 Related Work
	9 Concluding Remarks
	References

