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ABSTRACT
Volumetric videos allow viewers to exercise 6-DoF (degrees of free-
dom) movement when consuming fully 3D content (e.g., point
clouds). Due to their truly immersive nature, streaming volumetric
videos is highly bandwidth-demanding. In this work, we present
to our knowledge a first volumetric video streaming system that
leverages 3D super resolution (SR) of point clouds to boost the video
quality on commodity devices, and to facilitate the distribution of
volumetric content over bandwidth-constrained wireless networks.
However, directly applying off-the-shelf 3D SR models leads to
unacceptably low performance (∼ 0.1 FPS even on a powerful GPU).
To overcome this limitation, we propose a series of optimizations
to make SR efficient. Our preliminary results indicate that for an
edge-assisted (standalone mobile) setup, a small subset of our pro-
posed optimizations can already drastically improve the FPS by a
factor of 131× (53×) and reduce GPU memory usage by 83% (76%),
while maintaining the same or even better SR inference accuracy,
compared to using an off-the-shelf SR model.
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1 INTRODUCTION
Today’s multimedia content is gaining not only higher resolutions,
but also higher degrees of immersion, as demonstrated by, for ex-
ample, the popularity of 360° panoramic videos [10, 27]. Another
emerging type of multimedia content is volumetric videos that bear
even more immersion and user interactions. In a volumetric video,
every frame consists of a 3D scene that is represented by a point
cloud (i.e., a set of unsorted points in 3D space). Playing a volumet-
ric video is thus essentially rendering a stream of point clouds at a
fast pace such as 30 or 60 frames per second (FPS). The 3D repre-
sentation offers full immersion, allowing a user to freely explore
the 3D scene during video playback. The viewer can move with
six degrees of freedom (6-DoF): three rotational dimensions (i.e.,
viewing direction in yaw, pitch, and roll) and three translational
dimensions (i.e., viewpoint position in X, Y, and Z).
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Due to their true 3D nature, volumetric videos have registered
numerous applications in entertainment, education, healthcare, etc.
that cannot be supported by 2D videos. However, a unique challenge
is that streaming high-resolution1 point clouds over the network
is extremely bandwidth hungry [9, 26]. Even with compression,
hundreds of Mbps of bandwidth is required to stream point clouds
consisting of, for example, hundreds of thousands of 3D points per
frame. The high bandwidth utilization has thus become a major
hurdle preventing high-resolution volumetric videos from being
distributed in particular over wireless/mobile networks.

While static point clouds have been extensively studied by the
computer graphics community [14, 15, 17], efficient volumetric
video streaming remains an emerging research topic. This paper
presents a holistic research agenda on innovating volumetric stream-
ing through Super Resolution (SR). To the best of our knowledge,
this is the first effort to apply SR to volumetric video streaming at line
rate on consumer-class devices, with the goal of drastically reducing
the bandwidth usage while maintaining a high quality-of-experience
(QoE).

Originally, SR employs deep neural networks (DNN) to improve
(i.e., upsample) content resolution for 2D content [4, 6, 34, 36] by
leveraging the overfitting property of DNN (Figure 1 Left). Recently,
the CV/ML community extended SR to static point clouds [21, 38]
(Figure 1 Right). We find that a well-designed 3D SR model (e.g.,
PU-GAN [21]) for static point clouds is indeed effective, e.g., reduc-
ing bandwidth usage by 74% with little visual quality loss. Such
significant bandwidth savings greatly facilitate the wireless distri-
bution of volumetric content. However, when applied to volumetric
streaming, it suffers from an unacceptably low performance at ∼0.1
FPS even on a high-end GPU. In contrast, off-the-shelf 2D SRmodels
can effortlessly achieve line rate (>30 FPS) on a desktop GPU [36].
Also, there is a lack of visual consistency across upsampled 3D point
clouds in consecutive frames (§3). To address these challenges, we
judiciously design a series of novel and critical optimizations, many
tailored to the unique characteristics of volumetric videos.

Boosting the 3D SR performance from 0.1 FPS to the line rate
(at least 30 FPS) on consumer-class devices faces tremendous chal-
lenges from both the algorithm and system’s perspectives. Our
high-level design concept consists of the following: (1) leverag-
ing unique properties of 3D point clouds and strategically trade
a small upsampling accuracy loss for significant runtime perfor-
mance improvement; (2) considering not only the properties of
a single point cloud belonging to a volumetric video frame, but
also the correlations between point cloud instances in a series of
frames in a volumetric video; (3) adapting the SR behavior to the
client’s processing capability and network condition. Specifically,
our proposed innovations include the following.

1The resolution of a point cloud is defined as its point density; the resolution of a
volumetric video is the average resolution of its point-cloud frames.
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Figure 1: 2D super resolution for images (left) vs. 3D super resolution for point clouds (right).

• Through judicious model trimming and modification, we reduce
the SR inference time while maintaining good inference accuracy.
• As off-the-shelf SR models are designed for only a single point
cloud instance, we develop robust solutions to facilitate the visual
consistency of the SR results across consecutive point cloud frames.
• Leveraging the unique characteristics of point clouds, we merge
the low-resolution point cloud with the upsampled SR result to
reduce the SR overhead.
• Given that off-the-shelf SR models for point clouds do not up-
sample colors, we develop resource-efficient schemes to color the
upsampled point clouds.
• Our system is expected to work on heterogeneous client devices
and over different network conditions. We design an online opti-
mization framework that makes point cloud upsampling adaptive
to the potentially scarce and fluctuating computation and network
resources.

We are integrating the above components into a holistic system
called VoluSR, which can be deployed in two settings. The first
is for edge-assisted VR/AR systems, where a VR/AR headset is
connected to an edge instance such as a gaming PC. The edge
fetches volumetric content from an Internet server and performs SR
and rendering. It then transmits rendered images to the headset (e.g.,
over an HDMI cable). In this setting, VoluSR reduces the Internet-
to-edge bandwidth consumption (by up to 74% in our experiments,
compared to no SR). The second setting is for a standalone mobile
VR/AR system, where a mobile VR/AR headset fetches volumetric
content and performs SR and rendering locally. In this setting,
VoluSR reduces the bandwidth consumption between the Internet
server and the mobile device.

Our preliminary results indicate that for the edge-assisted setup
using an Nvidia 2080 Ti GPU (the mobile-only setup using an Nvidia
Jetson TX2 embedded system board), a small subset of our proposed
optimizations can already drastically improve the FPS by a factor
of 131× (53×) and reduce GPU memory usage by 83% (76%), while
maintaining the same or even better SR inference accuracy, com-
pared to using unoptimized, off-the-shelf SR model. VoluSR thus
has the potentials of transforming SR-boosted volumetric video
streaming from theory to practice on commodity client devices.

2 RELATEDWORK
Volumetric Video Streaming. In the literature, there are only a
few studies on volumetric video streaming. DASH-PC [11] extends
dynamic adaptive streaming over HTTP (DASH) to volumetric
videos. PCC-DASH [31] is another DASH-based streaming scheme
of compressed point clouds with bitrate adaptation support. Park et
al. [25] make volumetric streaming viewport-adaptive by leverag-
ing 3D tiling. Gül et al. [8] propose to utilize remote cloud rendering
for low-latency volumetric streaming. Recently, we also propose

to leverage the edge to render volumetric videos for mobile de-
vices [26]. Another recent work ViVo [9] introduces visibility-aware
volumetric video streaming, which delivers mainly the (predicted)
visible portion to the viewer to reduce resource consumption. None
of the above work considers 3D SR.

Point Cloud Super Resolution (SR). We can divide the re-
lated work on SR for point clouds into two categories: optimization-
based [2, 12] and learning based [21, 32, 33, 38]. The optimization-
based approach proposed by Alexa et al. [2] upsamples a point
cloud by iteratively computing Voronoi diagrams on its surface.
Huang et al. [12] propose an upsampling method that better pre-
serves sharp edges. Most data-driven learning approaches follow
the end-to-end workflow established in PU-Net [38], which divides
a point cloud into small patches, learns multilevel point features
of each patch, expands these extracted features, and reconstructs
the points from the expanded features. To extend PU-Net, PU-
GAN [21] introduces data amendment into SR through a generative
adversarial network (GAN); MPU [32] splits a large upsampling
network into several small subnets, each focusing on a different
level of detail; AR-GCN [33] integrates residual connections into
graph convolution networks (GCN). As to be described in §3, all the
above methods are designed for upsampling a single point cloud;
they suffer from numerous limitations, in particular, unacceptable
performance when applied to volumetric video streaming.

3 BACKGROUND AND MOTIVATION
SR was initially designed for improving the visual quality of 2D
images [4, 34]. Assisted by deep neural networks (DNNs), a learning-
based SR consists of an offline training phase and an online infer-
ence phase. When applied to a video 𝑣 , SR trains a DNN model𝑀
that upsamples low-resolution frames 𝐿(𝑣) to high-resolution ones
𝐻 (𝑣), using the original (high-resolution) frames 𝐹 (𝑣) as the train-
ing data. In the inference phase, the server sends𝑀 and 𝐿(𝑣) to the
client, which infers 𝐻 (𝑣) = 𝑀 (𝐿(𝑣)). SR leverages the overfitting
property of DNN to ensure that 𝐻 (𝑣) is highly similar to 𝐹 (𝑣). It
achieves bandwidth reduction since the combined size of 𝑀 and
𝐿(𝑣) is usually much smaller than that of 𝐹 (𝑣). There have been
successful attempts on applying SR to 2D videos [6, 36].

Limitations of Applying Off-the-shelf 3D SR Models to
Upsample Volumetric Videos.Recently, the CV/ML research com-
munity extended SR to static point clouds [21, 38] (§2). In this work,
we explore, for the first time, the feasibility of employing SR to
upsample volumetric videos. We started with a simple approach:
applying PU-GAN [21], a state-of-the-art SR model, to upsample
every point cloud frame of a volumetric video. PU-GAN operates
by dividing a point cloud into smaller patches each consisting of
a subset of points. Both SR training and inference are performed
on a per-patch basis. Its DNN model is based on a generative ad-
versarial network (GAN) with 29 convolution layers and 2 fully
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Feature
Extraction

Feature
Expansion

Point Set
Generation

% Time 78.3% 19.3% 2.4%
Table 1: Profile the inference time of the PU-GAN model.

connected layers, which realize three stages: feature extraction,
feature expansion, and point set generation.

Our testing video was captured by three depth cameras. It has
3,622 frames each consisting of∼100K points depicting a performing
actor. We use all its frames to train a PU-GAN network. We set the
SR ratio (i.e., upsampling ratio) to 4, making the input and output
point clouds consist of roughly 25K and 100K points, respectively.
In other words, ideally the model can yield a 300% increase in video
resolution.

We next describe our findings. On the positive side, themodel can
accurately reconstruct each individual frame, i.e., each upsampled
point cloud is highly similar to the original one in terms of the
geometric structure. We quantify the similarity using the Earth
Mover’s Distance (EMD [28]) as:

L𝐸𝑀𝐷 (𝐼 ,𝐺) = min
𝜙 :𝐼→𝐺

1
|𝐼 |

∑
𝑥 ∈𝐼

| |𝑥 − 𝜙 (𝑥) | |2 (1)

where 𝐼 and𝐺 are the upsampled point cloud and the ground truth,
respectively; 𝜙 : 𝐼 → 𝐺 is a bijection from the points in 𝐼 to those
in𝐺 . The average EMD value across all frames is 1.47× 10−2𝑚 that
confirms good upsampling accuracy [21]; it is also verified by our
visual inspection of each frame. Also encouragingly, we find that
SR can achieve significant savings of bandwidth. For this 2-minute
video, the sizes of 𝐹 (𝑣),𝑀 , and 𝐿(𝑣) are 1.40 GB, 560KB, and 0.36GB,
respectively, leading to a bandwidth reduction of 74.2%.

However, we notice three major issues with the vanilla PU-GAN
model. First, the runtime performance is extremely poor. On a ma-
chine with a state-of-the-art GPU (Nvidia 2080 Ti), the upsampling
FPS is only 0.1 – far below our desired FPS of at least 30. This
presents a unique challenge for applying SR to volumetric video
streaming, as off-the-shelf SR models for regular 2D videos can
effortlessly achieve line rate (>30 FPS) on a desktop GPU [36]. Sec-
ond, the upsampled video exhibits visual inconsistency: despite the
good upsampling quality of each individual frame, the upsampled
points shift randomly across consecutive frames even when the
geometric shape remains the same. Although the shifted distance
of each individual point is negligible, the random movements of a
massive number of points cause an unpleasant “flickering” effect
that impacts the QoE. Note that such visual inconsistency is intro-
duced during upsampling, as the original point cloud videos do not
exhibit this issue. Third, PU-GAN does not support color. We also
examined other 3D SR models for point clouds such as MPU [32]
and AR-GCN [33]. They all exhibit the same limitations.

4 THE VoluSR FRAMEWORK
As described in §1, volumetric video streaming is extremely band-
width hungry. To overcome this challenge, in this study, we develop
VoluSR, the first system that aims to perform SR at line rate for
volumetric videos on commodity devices. We next describe its six
main components denoted as C1 to C6.

C1: Simplify SR Model and Patch Generation.To satisfy the
key timing requirement of point cloud streaming, we optimize the

SR model by reducing its inference time while maintaining good
inference accuracy. As shown in Table 1, By profiling the runtime
performance of the vanilla PU-GAN model, we find that the bottle-
neck of the inference is feature extraction (accounting for 78% of
the inference time), which is thus our optimization target. Through
careful model trimming in the feature extraction stage, we find that
it is feasible to speed up the model inference with little impact on
the inference accuracy. Specifically, our current model tuning con-
sists of the following three approaches. (1) We remove the last two
dense layers of feature extraction as well as several heavy-weight
convolution layers in the feature expansion stage, as they are found
to contribute little to the upsampling accuracy; (2) we replace the
original feature extraction function with a spherical kernel [20] for
more efficient convolution operations; (3) we judiciously remove a
small number of features to reduce the GPU memory consumption.
At a high level, our experiences and results (§5) indicate that off-
the-shelf models developed by the CV/ML community still have
considerable room for system performance improvement when
being integrated into volumetric video streaming. We plan to refine
the above results using more systematic optimization techniques
and diverse point cloud videos, as well as to investigate how to
simplify other SR models.

VoluSR also optimizes the patch generation. Recall from §3, to
ensure a small model size, a 3D SR model divides a point cloud into
small patches as basic units for upsampling. We discover that the
patch generation process incurs a high overhead. Again take PU-
GAN as an example. It generates the patches by applying k-nearest
neighbors (kNN) to the seeds created by downsampling. Since the
generated patches may overlap, after upsampling, PU-GAN applies
the furthest point sampling [24] to remove duplicated points. We
consider two directions tomitigate the above overhead. First, we can
generate the patches offline since the point cloud frames are known
for video on demand (VOD) streaming. Second, we can simplify the
patches’ geometry shapes to make them easy to be manipulated at
runtime. Specifically, the shapes of patches generated by kNN and
the furthest point sampling do not have closed-form mathematical
expressions. This makes it difficult to perform many operations in
VoluSR such as viewport intersection tests in C5. We will explore
the Voronoi diagram [7] for efficiently generating the patches. In a
Voronoi diagram, the area (patch) that each vertex (seed) 𝑠 belongs
to consists of points whose distances to 𝑠 are less than or equal
to those to any other vertex. This key property naturally ensures
that each patch consists of a “continuous” region of points, and
the patch sizes tend to be homogeneous (assuming the seeds are
uniformly selected). An even faster approach is to divide the space
into cubic grids, with each non-empty grid (which contains points)
corresponding to a patch. Both approaches above bring no overlap
among patches, thus eliminating the overlap removal step.

C2: Consider Consistency across Frames.Asmentioned in §3,
independently applying an SR model to individual point cloud
frames can cause visual inconsistency – a problem that is over-
looked in 2D SR. Some generic solution ensures the output consis-
tency of image processing algorithms by training an RNN model
using consecutive 2D frames [19]. However, this is too computation-
ally expensive in 3D SR. Instead, we take two methods to mitigate
this problem. First, we modify the loss function of the SR model
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to ensure cross-frame consistency. Specifically, we add to the loss
function a penalty term based on the inconsistency between the
current patch and the corresponding patches in the previous frames.
The penalty term is formulated using the EMD metric (Eq. 1).

The second approach we adopt is to reuse SR results. Let 𝐴 and
𝐵 be two patches at the same location of two consecutive frames.
Let 𝑙 (𝐴) and ℎ(𝐴) be the low-resolution (input to SR) and high-
resolution (output of SR) versions of𝐴, respectively. Similar notions
𝑙 (𝐵) and ℎ(𝐵) are also defined. We can calculate a “motion vector”
−→
𝑉𝑙 from 𝑙 (𝐴) to 𝑙 (𝐵) that approximates how the points in 𝑙 (𝐴) are
transformed to the points in 𝑙 (𝐵). We then use ℎ(𝐴) +−→𝑉𝑙 to approxi-
mate ℎ(𝐵). This brings two benefits. First, the transition from ℎ(𝐴)
to approximated ℎ(𝐵) is smooth, thus eliminating the inconsistency
problem; second, we do not need to run SR on 𝑙 (𝐵), thus reducing
the computation overhead. The downside is that the approxima-
tion of ℎ(𝐵) may not be accurate if 𝐴 and 𝐵 are geometrically very
different. Therefore, we only apply the above approximation if −→𝑉𝑙 is
small (e.g.,when𝐴 and 𝐵 belong to a static object or the lower body
of a standing speaker). For VOD streaming, since the content is
known, −→𝑉𝑙 can be computed offline using methods such as bipartite
graph matching, or point cloud registration [30].

C3: Merge SR Input with the SR Output.The inference stage
of almost all machine learning models are conceptually the same
and straightforward: feed the input features to the model, which
then subsequently produces the output label. After the output label
is generated, the input features are no longer useful. The same
procedure applies to our investigated 3D SR models [21, 32, 33].
We instead make two interesting observations regarding SR for
point clouds. First, a point cloud is a set of unstructured points,
meaning that multiple point clouds can be combined into a single
point cloud by simply merging their points. Second, SR’s output
points are different from the input due to the complex, non-linear
operations taken by the SR model. Based on these two observa-
tions, VoluSR overlays the SR model’s input (i.e., low-resolution
point clouds) onto the SR model’s output (i.e., high-resolution point
clouds). This helps improve the upsampling quality when the SR
model is fixed, or reduce the computation overhead while maintain-
ing a similar upsampling quality. For example, in order to achieve
3× upsampling, we can use a 2× SR model and merge the input
with the output, instead of directly using a 3× SR model that is
more computationally heavy. We experimentally confirm that both
methods (e.g., 3× SR and 2× SR with merging) yield similar upsam-
pling accuracy. In general, to achieve an 𝑛× upsampling ratio, we
can merge the input with the output of an (𝑛 − 1)× SR model.

C4: Color the SR Results. VoluSR supports coloring the up-
sampled volumetric videos. To achieve this goal, we are exploring
two approaches. One is to modify the SR model itself by also infer-
ring the color components. This approach is expected to accurately
reconstruct the original colors but at the cost of nearly doubling the
SR workload, because the model needs to infer not only each point’s
position (X, Y, Z), but also its color (R, G, B). The other approach
is to approximate a point’s color using the color information in
the low-resolution frame (i.e., the input to the SR model) through,
for example, interpolation. This approach can be made lightweight
but may also be less accurate. To balance the performance and
visual quality, the above two approaches can be combined: using

interpolation-based approximation for patches with simple, homo-
geneous colors, and using SR with color support for patches with
complex color patterns. In addition, we can relax the color fidelity
requirement as the distance between the viewer and the content
increases.

C5: Viewport-adaptive Streaming. With 6-DoF movements,
viewers can freely change the viewing position and direction to
the displayed volumetric content. Since the viewer oftentimes only
perceives a small portion of the entire point cloud, the client can
choose to only upsample patches that are predicted to fall into the
view frustum (i.e., the viewport in 3D); for outside-viewport patches,
the client can use a low SR ratio or not perform upsampling at all to
reduce the resource footprint. This viewport-adaptive optimization
requires 6-DoF prediction of the viewport in the near future, whose
feasibility was demonstrated in our prior work [9].

C6: Make SR Adaptive to Computation and Network
Resources. For traditional video streaming, a major challenge is
to design an adaptive bitrate (ABR) algorithm that adapts the video
quality to the network condition. While the same adaptation for
volumetric video streaming is important (and new), we emphasize
that adapting to the available computation resources is also critical
to SR-enhanced volumetric video streaming because upsampling is
computationally heavy. An even bigger challenge faced byVoluSR is
that the consumption of computation and network resources incurs
a critical tradeoff: increasing the SR ratio reduces the network
bandwidth consumption but increases the computation resource
usage, while decreasing the SR ratio goes the other way. VoluSR
therefore employs a discrete optimization framework to formally
balance this tradeoff and to handle situations where both types of
resources are insufficient. We next describe our current formulation.
For each frame 𝑖 , a possible way to model its QoE is:

𝑄𝑜𝐸𝑖 = 𝑄𝑖 − 𝛼 (𝐼1,𝑖 + 𝐼2,𝑖 ) − 𝛽 ·𝑇 𝑠𝑡𝑎𝑙𝑙
𝑖 (2)

where 𝑄𝑖 represents the visual quality of all the patches belonging
to frame 𝑖; 𝐼1,𝑖 is the quality change from frame 𝑖 − 1 to frame 𝑖;
𝐼2,𝑖 is quality variation across the patches within frame 𝑖 . A large
inter-frame quality change or infra-frame patch quality change will
degrade the viewer’s QoE.𝑇 𝑠𝑡𝑎𝑙𝑙

𝑖
denotes the incurred stall duration

due to the excessive network delay or local computation delay of
SR. 𝛼 and 𝛽 are the weights penalizing the quality variation and
stall, respectively. We define 𝑄𝑖 , 𝐼1,𝑖 , and 𝐼2,𝑖 as follows.

𝑙𝑖, 𝑗 = 𝑑𝑖, 𝑗𝑢𝑖, 𝑗 (1 − 𝐸𝑆𝑅 (𝑢𝑖, 𝑗 )), 𝑄𝑖 =
∑

patch 𝑗

𝑣𝑖, 𝑗 𝑙𝑖, 𝑗 (3)

𝐼1,𝑖 =

∑𝑗 𝑣𝑖,𝑗 𝑙𝑖,𝑗∑
𝑗 𝑣𝑖,𝑗

−
∑

𝑗 𝑣𝑖−1, 𝑗 𝑙𝑖−1, 𝑗∑
𝑗 𝑣𝑖−1, 𝑗

 , 𝐼2,𝑖 = StdDev
(
{𝑙𝑖,𝑗 |∀𝑗, 𝑣𝑖,𝑗 > 0}

)
(4)

In Eq. 3, 𝑙𝑖, 𝑗 is the quality of patch 𝑗 in frame 𝑖 . For each patch,
the client needs to make two decisions: (1) select quality level
𝑑𝑖, 𝑗 ∈ {1, ..., 𝑘} and fetch it from the server; (2) apply SR ratio
𝑢𝑖, 𝑗 ∈ {1, ..., 𝑘 ′} to the fetched patch. 𝑘 and 𝑘 ′ are the number of
quality levels stored on the server and the number of possible SR
ratios, respectively (𝑢𝑖, 𝑗 = 1 means no SR is applied). The resulting
quality of the patch is 𝑙𝑖, 𝑗 = 𝑑𝑖, 𝑗𝑢𝑖, 𝑗 (1 − 𝐸𝑆𝑅 (𝑢𝑖, 𝑗 )) where 𝐸𝑆𝑅 (𝑢𝑖, 𝑗 )
denotes the quality loss due to SR. 𝑄𝑖 is defined as the sum of the
𝑙𝑖, 𝑗 values across all the visible patches of frame 𝑖 . 𝑣𝑖, 𝑗 ∈ {0, 1} is a
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𝑂1 The vanilla PU-GAN model [21].
𝑂1 and optimizing patch generation: divide the space into

𝑂2 cubic grids, with each non-empty grid corresponding to
a patch.
𝑂2 and trimming some layers of PU-GAN: remove the last

𝑂3 two dense layers of feature extraction and several heavy-
weight convolution layers in the feature expansion stage.
𝑂3 and accelerating the convolution operations: replace

𝑂4 the original feature extraction function with a spherical
kernel function (SKF) in the feature extraction stage.

𝑂5
𝑂4 and generating fewer features: remove a small number
of features to reduce the GPU memory consumption.

Table 2: Our currently implemented optimizations in C1.

𝑂1 𝑂2 𝑂3 𝑂4 𝑂5
GPU Memory Usage (MB) 7065 7065 7065 1811 1171
Frames per second (FPS) 0.1 2.5 4.0 7.9 13.1
Average Accuracy (cm) 1.47 0.71 0.68 0.93 0.80

Table 3: Memory usage, upsampling FPS, and upsampling
accuracy of 𝑂1 to 𝑂5 (edge-assisted setup).

𝑂1 𝑂2 𝑂3 𝑂4 𝑂5
Memory Usage 4760 3981 4173 1521 1138

Frames per second (FPS) 0.2 1.0 1.7 5.0 10.7
Average Accuracy (cm) 3.50 3.08 3.11 3.11 2.55

Table 4: Memory usage, upsampling FPS, and upsampling
accuracy of 𝑂1 to 𝑂5 (mobile-only setup).

binary function indicating whether patch 𝑗 in frame 𝑖 is visible in
the viewport. In Eq. 4, 𝐼1,𝑖 is the difference of the average quality of
visible patches between frames 𝑖 and 𝑖 − 1, and 𝐼2,𝑖 is the standard
deviation of all the visible patches in frame 𝑖 . In Eq. 2,𝑇 𝑠𝑡𝑎𝑙𝑙

𝑖
can be

estimated by comparing the frame’s playback deadline and its total
downloading/processing latency, which consists of downloading,
decompressing, (optional) upsampling, and rendering the patches.
We will derive the parameters such as 𝛼 and 𝛽 through user studies
where participants give subjective QoE scores to volumetric video
snippets with different 𝑄𝑖 , 𝐼 {1,2},𝑖 , and 𝑇 𝑠𝑡𝑎𝑙𝑙

𝑖
.

When running on a client for the first time, VoluSR conducts
one-time performance profiling of the device’s upsampling speed,
which is needed to estimate 𝑇 𝑠𝑡𝑎𝑙𝑙

𝑖
. At runtime, the client performs

online optimizations to maximize Eq. 2 for frames in a forward-
looking window. The decisions to make consist of which patches
to fetch and what SR ratios to apply to the patches.

5 RESULTS OF OPTIMIZATION C1
Our proposed design of VoluSR indicates that it is far from trivial
to incorporate (even a well established) deep learning model into a
networked system. We next present the preliminary results of our
ongoing implementation of VoluSR.

We have conducted a preliminary implementation of C1 (sim-
plifying SR model and patch generation). Table 2 summarizes our
currently implemented optimizations. 𝑂1 denotes the vanilla PU-
GAN model as the comparison baseline; 𝑂2 to 𝑂5 are our currently
implemented optimizations belonging to C1. They are presented

in a cumulative fashion, i.e., 𝑂𝑖 includes every feature of 𝑂𝑖−1 plus
some new feature.

We consider two evaluation setups described in §1: edge-assisted
streaming and mobile-only streaming. For the edge-assisted setup,
we use a PC with an Nvidia 2080 Ti GPU to upsample the video
used in §3 from 25k points/frame to 100k points/frame; for the
mobile-only setup, we use a Jetson TX2 embedded system board
with a 256-core Nvidia Pascal GPU to upsample the same video
from 5k points/frame to 20k points/frame. Both setups use the same
SR ratio of 4×. We use a lower resolution in the mobile-only setup
because the mobile GPU is much weaker than the desktop GPU.

We consider three metrics shown in Table 3 and 4: (1) maximum
GPUmemory usage (on Jetson TX2wemeasure the systemmemory
shared by GPU and CPU), (2) average upsampling speed (in FPS),
and (3) inference accuracy measured in EMD between each upsam-
pled frame and the ground truth. The results of edge-assisted setup
and mobile-only setup are shown in Tables 3 and 4, respectively.
For the edge-assisted setup, compared to 𝑂1, 𝑂5 reduces the GPU
memory usage by 83%, accelerates the upsampling by 131×, and
improves the average upsampling accuracy by 46%. Also as shown,
each optimization (𝑂2 to𝑂5) individually improves the upsampling
speed and possibly other metric(s). The mobile-only setup shows a
similar trend. Compared to 𝑂1, 𝑂5 reduces the memory usage by
76%, accelerates the upsampling by 53×, and improves the average
upsampling accuracy by 27%. The two setups differ in inference
accuracy mainly because of their different point cloud densities (the
former’s video has a 4× point density compared to the latter). We
will develop other components proposed in §4, which are expected
to further boost the SR performance to line rate.

6 DISCUSSION
3D SR vs. Other Video Compression Schemes. The compres-
sion (encoding) of volumetric videos is very different from that of
conventional 2D videos. Volumetric videos are usually compressed
by special data structures such as Octree [29] and k-d tree [5] on
a per-frame basis. It is worth mentioning that SR is orthogonal
to and can work in conjunction with them. In fact, in the pilot
experiment in §3, we apply both PU-GAN and k-d tree based com-
pression (implemented using Draco [1]) to the point cloud stream.
Also, there are very few studies on inter-frame compression of
volumetric videos [16, 23], and we find them to be either too com-
plex, or incompatible with 3D SR that works on a per-patch basis.
We therefore propose new schemes that reuse SR results across
frames (C2); they can be regarded as new inter-frame compression
methods for volumetric videos.

3D SR vs. 2D SR. There are several existing studies on applying
SR to conventional 2D videos [6, 18, 35, 36]. Compared to 2D SR, 3D
SR is different and unique because pixel-based 2D videos (including
360° videos) fundamentally differ from volumetric videos whose
frames consist of unstructured points or polygons. As a result, 3D
SR for volumetric videos has vastly different model structures, and
incurs much higher computation overhead compared to 2D SR. We
find that merely downscaling an SR model (as performed in several
2D SR studies [6, 36]) is far from achieving 3D SR at line rate. We
therefore develop for VoluSR unique optimizations tailored to 3D
SR, such as C2, C3, and C5.
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Energy Consumption and Heat Dissipation.When VoluSR
runs on a mobile device, it may incur non-trivial energy consump-
tion and temperature increase. This is attributed to the high com-
putation overhead of 3D SR as described above. However, while
incurring higher CPU/GPU energy usage, applying SR helps reduce
the energy consumed by the network (in particular over the energy-
hungry cellular networks [13]). This is because SR allows the player
to download less data for achieving a similar level of visual quality
compared to no SR. Furthermore, the adaptation framework (C6)
can be enhanced to take into consideration the energy and heat
factors. We leave it as our future work.

QoE Model for SR-enhanced Volumetric Videos. There is
a plethora of work on understanding and modeling the quality-
of-experience (QoE) for conventional 2D videos [3, 22, 37]. For
example, a widely accepted QoE metric is a weighted sum of video
bitrate, stall duration, video quality switches, and startup delay [37].
However, QoE metrics for volumetric videos still remain an open
problem, not to mention the QoE impact of 3D SR. Compared to 2D
videos’ QoE, the QoE of SR-enhanced volumetric video streaming
can be affected by a much wider range of factors such as the point
density, viewing distance, SR ratio/distortion, artifacts incurred by
patches, to name a few. We plan to construct comprehensive QoE
models for SR-enhanced volumetric videos. To get the QoE ground
truth, we will play volumetric video segments with strategically
crafted impairments to subjects recruited from IRB-approved user
studies and ask the subjects to give subjective scores. The resource
adaptation algorithm (C6) will use the derived QoE model to guide
the selection of volumetric content resolutions and SR ratios.

7 CONCLUDING REMARKS
We conduct a first study of reducing the computation overhead for
SR-boosted volumetric video streaming through a series of novel
optimizations: simplifying SR model and patch generation; reusing
SR results across frames; and strategically leveraging the input to
SR models. We also develop robust methods to efficiently color
the SR results, and make SR adaptive to computation and network
resources. The above optimizations show case how methods from
computer vision, machine learning, graphics, and mobile systems
can be adapted to benefit volumetric video streaming. We are in
the progress of developing VoluSR. We also plan to conduct exten-
sive evaluations using real volumetric videos and real users’ 6DoF
motion traces under diverse network conditions.
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