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Abstract—Object detection models often struggle with class
imbalance, where rare categories appear significantly less fre-
quently than common ones. Existing sampling-based rebalanc-
ing strategies, such as Repeat Factor Sampling (RFS) and
Instance-Aware Repeat Factor Sampling (IRFS), mitigate this
issue by adjusting sample frequencies based on image and
instance counts. However, these methods are based on linear
adjustments, which limit their effectiveness in long-tailed distri-
butions. This work introduces Exponentially Weighted Instance-
Aware Repeat Factor Sampling (E-IRFS), an extension of IRFS
that applies exponential scaling to better differentiate between
rare and frequent classes. E-IRFS adjusts sampling probabilities
using an exponential function applied to the geometric mean
of image and instance frequencies, ensuring a more adaptive
rebalancing strategy. We evaluate E-IRFS on a dataset derived
from the Fireman-UAV-RGBT Dataset and four additional
public datasets, using YOLOv11 object detection models to
identify fire, smoke, people and lakes in emergency scenarios.
The results show that E-IRFS improves detection performance
by 22% over the baseline and outperforms RFS and IRFS,
particularly for rare categories. The analysis also highlights that
E-IRFS has a stronger effect on lightweight models with limited
capacity, as these models rely more on data sampling strategies
to address class imbalance. The findings demonstrate that E-
IRFS improves rare object detection in resource-constrained
environments, making it a suitable solution for real-time appli-
cations such as UAV-based emergency monitoring. The code is
available at: https://github.com/futurians/E-IRFS.

Index Terms—Object detection, class imbalance, rebalancing
strategies, instance-aware sampling, long-tailed distributions,
UAV-based monitoring, emergency detection, YOLOv11

I. INTRODUCTION

Effective object detection is essential in applications such
as wildfire monitoring and emergency response [1]. UAV-
based monitoring extends the capability of fixed-camera
networks by providing flexible aerial perspectives, enhancing
situational awareness in dynamic and remote environments.
In wildfire scenarios, timely detection of fire, smoke, and

Corresponding Author: Abhishek Kumar. Email: abhishek.k.kumar@jyu.fi

Fig. 1. Class distribution of the training and validation sets in the custom
benchmark dataset. Bars represent the number of images and instances per
class, with vertically aligned counts. The imbalance highlights the datasets
challenge for object detection models.

affected individuals is crucial for an effective response. How-
ever, deploying object detection models on UAVs introduces
computational constraints, requiring lightweight models that
can operate efficiently on resource-limited edge devices. This
highlights the need for training strategies that enable compact
models to achieve competitive detection performance.

Training object detection models for such applications is
challenging due to the scarcity of representative datasets and
the presence of class imbalance, where critical categories
(e.g., fire, people in distress) appear far less frequently
than common ones (e.g., buildings, vehicles) [2], [3]. This
imbalance affects model learning, leading to biased pre-
dictions toward frequent classes and reduced accuracy for
rare ones. Addressing this issue is essential in applications
where the detection of rare objects is critical to decision
making. Sampling-based methods, such as Repeat Factor
Sampling (RFS) [4], mitigate class imbalance by increasing
the probability of selecting images that contain rare objects.
Instance-Aware Repeat Factor Sampling (IRFS) improves
upon RFS by incorporating both the image count and the
instance count when determining the sampling weights [5].
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In this context, this work introduces Exponentially
Weighted Instance-Aware Repeat Factor Sampling (E-IRFS),
a rebalancing strategy for improving rare-class detection in
long-tailed object detection datasets. Unlike linear adjust-
ments in existing methods, E-IRFS applies an exponential
scaling mechanism to the geometric mean of image and
instance frequencies, amplifying rare-class sampling while
maintaining stable training. The evaluation is conducted on
a custom dataset based on the Fireman-UAV-RGBT Dataset
[1], [6] and four publicly available small datasets, covering
fire, smoke, people, and lakes in emergency scenarios. Fig-
ure 1 illustrates the class distribution, emphasizing the dis-
parity in image and instance counts. The method is compared
against RFS, IRFS, and a baseline without rebalancing using
YOLOv11 object detection models. The main contributions
of this work are:

• The introduction of E-IRFS, an extension of IRFS that
applies an exponential weighting mechanism to improve
sampling-based rebalancing for rare classes.

• A detailed evaluation of E-IRFS on an emergency re-
sponse dataset, showing its effectiveness in improving
detection accuracy for underrepresented categories.

• An analysis of how E-IRFS benefits lightweight object
detection models, where rebalancing strategies have a
stronger effect due to the models limited capacity.

These contributions refine class imbalance handling in
object detection. E-IRFS enhances rare-class representation
without excessive oversampling, benefiting lightweight mod-
els that struggle with imbalance. This makes it well-suited for
UAV-based monitoring and edge applications. Table I sum-
marizes the symbols and notations used throughout the paper
for consistency. The code for E-IRFS and the implementation
details of the custom benchmark dataset are available at:
https://github.com/futurians/E-IRFS.

TABLE I
SUMMARY OF SYMBOLS AND NOTATIONS

Symbol Definition
c Class index
i Image index
fc Fraction of images containing class c
fi,c Fraction of images with at least one instance of c
fb,c Fraction of bounding boxes belonging to c
rc Repeat factor for class c
ri Repeat factor for image i
t Threshold for oversampling activation
α Scaling parameter for E-IRFS
pi Probability of selecting image i for training

II. RELATED WORK

Class imbalance in object detection datasets affects model
performance by introducing biases toward frequent classes
while reducing the ability to detect underrepresented ob-
jects. Many real-world datasets, particularly in autonomous
systems, surveillance, and emergency response, follow long-
tailed distributions where rare but critical categories appear
infrequently [2], [3]. This imbalance is especially problematic

in safety-critical applications, where missing rare objects can
impact decision-making. Studies have shown that standard
training pipelines often neglect underrepresented classes due
to conventional loss formulations and the dominance of
frequent classes in training data [7]. The issue is more
pronounced in single-stage detectors, where class distribution
affects anchor assignments and training dynamics, whereas
two-stage detectors demonstrate greater robustness but still
require adjustments to handle skewed datasets. Approaches
to address class imbalance in object detection can be catego-
rized into data-level methods, algorithm-level modifications,
and hybrid techniques. Data-level methods adjust the dataset
distribution by modifying how samples are selected or gener-
ated during training. Algorithm-level modifications introduce
adjustments to the model architecture or loss function to en-
hance learning for underrepresented classes. Hybrid methods
combine both strategies, integrating data augmentation with
reweighting techniques to improve representation.

A. Data Augmentation for Imbalance Mitigation

Among data-level strategies, data augmentation is com-
monly used to artificially increase the number of rare-
class samples. Techniques such as copy-paste augmentation
[8] insert rare objects into new images to enhance their
representation. Similarly, Mosaic augmentation [9] merges
multiple images into a single training sample to increase the
variability of object occurrences. While data augmentation
methods improve the diversity of training samples, they do
not directly correct class distribution imbalances. Augmented
samples remain subject to the same class frequencies as the
original dataset, which means that rare classes may still be
underrepresented during model training.

B. Sampling-Based Methods for Rebalancing

Sampling-based rebalancing adjusts the selection fre-
quency of training samples without modifying the dataset
itself. By increasing the presence of rare classes in training
batches, these methods help mitigate class imbalance. Unlike
loss reweighting, which alters optimization, they directly
influence sample distribution. Early methods, such as class-
balanced sampling, assigned equal probabilities to all classes
but often led to overfitting due to excessive rare-class upsam-
pling. More refined strategies constrain class occurrence to
maintain stability. Among them, RFS [4] and IRFS [5] have
shown effectiveness.

1) Repeat Factor Sampling (RFS): Repeat Factor Sam-
pling (RFS) [4] was introduced to rebalance long-tailed
object detection datasets by assigning higher sampling proba-
bilities to images containing rare classes. The method defines
a repeat factor based on the number of images in which
a class appears, ensuring that classes with lower frequency
are oversampled during training. For a given category c, the
category-level repeat factor is defined as:

rc = max

(
1,

√
t

fc

)
(1)
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For each image i, the image-level repeat factor is computed
as ri = maxc∈i rc, where c ∈ i represents the categories
in image i. Images are repeated during training based on
ri, increasing the presence of rare-class instances. However,
RFS only considers image-level frequency, ignoring instance
counts, which can lead to inconsistencies when classes with
similar image frequencies have different instance distribu-
tions.

2) Instance-Aware Repeat Factor Sampling (IRFS): To
address the previous issue, IRFS method [5] extends RFS
by incorporating both image count and instance count into
the sampling process. The method defines the repeat factor
based on the geometric mean of these two values, allowing
the sampling strategy to reflect both the presence and density
of objects in the dataset. The repeat factor for a given class
c is defined as:

rc = max

(
1,

√
t√

fi,c · fb,c

)
, (2)

determining how frequently images containing class c should
be sampled during training, t is a predefined threshold
that controls the degree of rebalancing by determining how
aggressively rare classes should be oversampled.

√
fi,c · fb,c

is the geometric mean of the image frequency and instance
frequency, ensuring a balanced measure of class presence and
density.

III. PROPOSED METHODOLOGY

Existing sampling-based rebalancing techniques, such as
RFS and IRFS, have improved rare-class representation in
long-tailed object detection. However, these methods rely on
linear weighting functions, which do not sufficiently amplify
the presence of extremely rare classes. IRFS improves upon
RFS by incorporating both image count and instance count,
but its geometric mean formulation still applies only a
limited adjustment for highly underrepresented categories. To
address this limitation, we introduce Exponentially Weighted
Instance-Aware Repeat Factor Sampling (E-IRFS), which
applies an exponential weighting function to the geometric
mean of image and instance frequencies. This adjustment en-
sures that rare classes receive a stronger sampling adjustment
while preventing excessive overrepresentation of frequent
classes. The exponential function enhances differentiation
between rare and frequent categories, making the sampling
process more adaptive to highly skewed distributions.

A. Exponentially Weighted Instance-Aware Repeat Factor
Sampling (E-IRFS)

To further refine instance-aware sampling, we propose
Exponentially Weighted Instance-Aware Repeat Factor Sam-
pling (E-IRFS). This method amplifies the oversampling
strength for rare classes by applying exponential scaling
to the repeat factor. The new class-level repeat factor is
formulated as:

rc = exp

(
α ·
√

t√
fi,c · fb,c

)
, (3)

where α is a scaling parameter that controls the aggres-
siveness of sampling adjustments, exp(·) ensures that small
values of fi,c·fb,c result in exponentially larger repeat factors,
and the square root mean

√
fi,c · fb,c balances both image

and instance counts.

B. Image-Level Sampling Using E-IRFS

Once the category-level repeat factors rc are computed,
the image-level repeat factor ri is given by ri = maxc∈i rc,
where ri determines how often an image is repeated during
training. Higher ri values indicate more frequent sampling of
images containing rare objects. The final sampling probability
of selecting each image for training is given by equation 4,
ensuring that rare classes receive higher sampling priority to
counteract class imbalance:

pi =
ri∑
j rj

, (4)

where
∑

j rj computes the total sum of all image-level
repeat factors across the entire dataset and pi represents the
normalized probability of selecting image ii for training. This
ensures that the sampling probabilities sum to 1, maintaining
training stability while emphasizing rare categories effec-
tively.

C. Theoretical Analysis

This section examines the properties of E-IRFS, including
its scaling behavior, impact on class distribution, and effect
on training convergence.

1) Scaling Behavior and Growth Rate: The effectiveness
of sampling-based rebalancing depends on how it adjusts the
sampling probability for rare classes. RFS and IRFS follow
sublinear growth patterns, providing limited reinforcement
for underrepresented categories. E-IRFS introduces an expo-
nential scaling mechanism that increases the sampling prob-
ability more aggressively for rare classes while maintaining
stability for frequent ones. The repeat factor rc determines
how strongly rare classes are oversampled. In RFS, it follows
an inverse square root relationship with image frequency
fi,c, while IRFS incorporates instance frequency fb,c using
a geometric mean:

a) RFS Growth Rate: rc ∝ f
−1/2
i,c

b) IRFS Growth Rate: rc ∝ (fi,c · fb,c)−1/4

c) E-IRFS Growth Rate: rc ∝ exp
(
α · (fi,c · fb,c)−1/4

)
E-IRFS extends IRFS by applying an exponential function

to the geometric mean, increasing the contrast between rare
and frequent categories. Since the exponential function grows
faster than polynomial functions, this approach increases
model exposure to underrepresented categories while main-
taining stable sampling for moderately frequent ones.



2) Sampling Distribution and Training Balance: E-IRFS
amplifies the sampling probability of images containing rare
objects, redistributing the probability mass to improve model
exposure to underrepresented categories. The probability of
selecting an image follows equation 4, where the exponential
weighting enhances the inclusion of rare-class instances
while preserving representation of frequent categories. The
resulting class distribution in training is given by Ptrain(c) ∝
rc ·Pdata(c), where Pdata(c) is the original dataset distribution.
For long-tailed datasets, Pdata(c) follows a power-law distri-
bution [10]: Pdata(c) ≈ c0f

−γ
i,c (for some constant c0 and

exponent γ). For different sampling strategies, the training
distribution is as follows:

a) RFS: Ptrain(c) ∝ f
−(γ+1/2)
i,c

b) IRFS: Ptrain(c) ∝ (fi,c · fb,c)−(γ+1/4)

c) E-IRFS: Ptrain(c) ∝ exp
(
α · (fi,c · fb,c)−1/4

)
f−γ
i,c

Since the exponential function in E-IRFS grows faster than
polynomial adjustments, it significantly enhances the pres-
ence of rare classes in training. This ensures that underrep-
resented categories receive stronger sampling reinforcement
while maintaining balance across all classes.

3) Computational Complexity: E-IRFS introduces an ad-
ditional exponential computation and a geometric mean cal-
culation per class. However, these operations remain in O(N)
per epoch, where N is the number of training images, similar
to RFS and IRFS. Since the sampling process itself remains
unchanged, the added computational overhead is minimal.

4) Effect on Convergence and Sampling Stability: In long-
tailed object detection, rare classes contribute weaker gradi-
ent updates, making them harder to learn. E-IRFS mitigates
this by increasing their representation, balancing gradient
updates, and stabilizing training. This is especially beneficial
for lightweight models with limited capacity to capture
long-tailed distributions. The stability of this adjustment is
supported by the mathematical properties of rc, with its first
derivative given by:

d

dfi,c
rc = α · exp

(
α ·
√

t√
fi,c · fb,c

)
·

− t

2
√
fb,cf3

i,c


(5)

Since the exponential function is always positive and
the second term is negative,rc is monotonically decreasing.
This ensures that as the image frequency fi,c decreases, the
sampling rate increases, reinforcing rare-class representation
in training. Furthermore, the second derivative is as follows:

d2

df2
i,c

rc = α·exp

(
α ·
√

t√
fi,c · fb,c

)
·

 3t

4
√
fb,cf5

i,c

 (6)

Since this expression is always positive, rc is convex.
This ensures a smooth transition between frequent and rare
categories, preventing abrupt sampling shifts and maintain-
ing stable training dynamics while improving detection of
underrepresented classes.

D. Benchmark Database

We created a custom benchmark for object detection by
merging five different datasets ( [1], [11], [12], [13], [14]).
To construct the training and validation sets of our custom
dataset, we used the original training and validation splits
from four of these datasets [11]–[14] without applying any
selection or filtering. From the dataset in [1], we selectively
used only the Unimodal-RGB subset from the Multimodal
collection, excluding the thermal modality. Furthermore, we
included only a curated set of video frames that contained at
least one of the following objects: fire, smoke, humans, or
lakes. The resulting custom dataset comprises 40,384 training
images and 11,953 validation images. The validation set was
formed by concatenating the official validation splits from the
five merged datasets rather than selecting a separate subset.
This setup ensures a diverse, yet intentionally unbalanced
distribution for evaluation purposes. The class imbalance
provides a challenging scenario for evaluating fire, smoke,
human presence, and water body detection, fostering robust
model training under diverse conditions. We also evaluate
E-IRFS on two well-known balanced datasets, CIFAR-10
[15] and Caltech-101 [16], to assess its behavior when class
distributions are uniform. This allows us to verify whether the
exponential reweighting introduces performance degradation
outside long-tailed scenarios.

TABLE II
CLASS DISTRIBUTION IN TRAINING AND VALIDATION SETS IN OUR

CUSTOM DATASET, ILLUSTRATING CLASS IMBALANCE.

Training Set Validation Set
Class Images Instances Percentage Images Instances Percentage
Fire 16,915 33,773 23.0% 1,436 2,336 8.5%

Smoke 28,769 32,538 22.1% 6,735 7,090 25.8%
Human 18,525 67,992 46.3% 4,804 16,612 60.5%
Lake 12,646 12,646 8.6% 1,087 1,426 5.2%
Total 40,384 146,949 100% 11,953 27,464 100%

E. Evaluation Metrics and Protocols

The effectiveness of the YOLOv11 object detection models
was evaluated using standard metrics provided by the Ultr-
alytics validation system. These metrics assess the accuracy
and reliability of the model in identifying objects across dif-
ferent conditions. To quantify detection performance, we used
mean Average Precision at an Intersection over Union (IoU)
threshold of 0.5 (mAP50) and mean Average Precision across
multiple IoU thresholds ranging from 0.5 to 0.95 in steps
of 0.05 (mAP50−95). The mAP50 metric evaluates detection
performance by computing the precision-recall curve at a
fixed IoU threshold of 0.5, allowing for some localization
tolerance. In contrast, mAP50−95 provides a more strict as-
sessment by averaging precision across multiple IoU thresh-
olds, thereby offering a more comprehensive measure of
detection accuracy and localization robustness. These metrics
facilitate a standardized comparison of model performance
across different object scales and levels of complexity within
the dataset, ensuring a rigorous evaluation of the proposed



approach. For classification tasks on CIFAR-10 and Caltech-
101, we report Top-1 and Top-5 accuracy, which measure
whether the correct class is the model first or among its five
highest-ranked predictions. These metrics are standard for
evaluating classification without localization.

IV. EXPERIMENTAL ANALYSIS AND RESULTS

A. Experimental Setup

All experiments used the Ultralytics YOLOv11 framework
[17]. The YOLOv11-Nano model (2.6M parameters) and
YOLOv11-Large (25.3M parameters) were trained on the
custom dataset using an NVIDIA A30 GPU (24GB VRAM)
to compare the impact of model size on performance. Train-
ing was performed using an image resolution of 640 640
pixels, batch size 16, and 100 epochs. The optimizer was
auto-selected with momentum 0.937, weight decay 0.0005,
and an initial learning rate of 0.01, gradually reduced to
0.001. Data augmentation was applied in all sampling-
based experiments unless explicitly omitted, including Mo-
saic (0.9), Mixup (0.2), Copy-Paste (0.3), AutoAugment, and
geometric transformations. Model performance was assessed
using mAP50 and mAP50−95 metrics at different threshold
values and values of the scaling parameter. The evaluation
included comparisons between RFS, IRFS, and the proposed
E-IRFS method, as well as baseline experiments with default
hyperparameters and augmentation configurations.

B. Performance Comparison of Re-Balancing Methods

This experiment compares the RFS, IRFS, and E-IRFS
with a baseline in the YOLOv11-Nano setup to evaluate their
impact on rare-class detection and overall model performance
with and without data augmentation. During training, we
set α = 2.0 for E-IRFS, and threshold t = 0.0001 for all
methods. The results presented in Table III, firstly, highlight
the performance of re-balancing methods without the influ-
ence of data augmentation. Both RFS and IRFS improve
mAP50 by 8% compared to the baseline but do not affect
the mAP50−95 metric. In contrast, E-IRFS achieves a 17%
increase in mAP50 and a 13% improvement in mAP50−95,
demonstrating its stronger ability to improve detection ac-
curacy across different object sizes. The significant gain
inmAP50−95 suggests that E-IRFS not only enhances class
balance but also contributes to better localization precision
for rare objects.

TABLE III
COMPARISON OF MAP50 AND MAP50−95 IN THE YOLOV11-NANO

SETUP, TRAINED WITH AND WITHOUT DATA AUGMENTATION.

No Data Augmentation Data Augmentation
Method mAP50 mAP50−95 mAP50 mAP50−95

Baseline 0.45 0.22 0.49 (+8%) 0.23 (+4%)
RFS 0.49 (+8%) 0.22 (+0%) 0.50 (+11%) 0.24 (+9%)
IRFS 0.49 (+8%) 0.22 (+0%) 0.50 (+11%) 0.24 (+9%)

E-IRFS 0.53 (+17%) 0.25 (+13%) 0.55 (+22%) 0.25 (+13%)

To further assess the effect of re-balancing with data
augmentation, Table III presents results with augmentation

applied across all methods, including the baseline. While
RFS and IRFS improve mAP50 by 11%, their gains remain
marginal compared to training without augmentation. In
contrast, E-IRFS achieves a 22% increase in mAP50 and
a 13% improvement in mAP50−95, further demonstrating
its advantage in addressing class imbalance, as shown in
Figure 2. These results suggest that while augmentation
benefits all methods, E-IRFS benefits the most due to its
exponential weighting, which amplifies the effect of balanced
sample exposure. The performance differences highlight a
key limitation of RFS and IRFS, where their linear weighting
does not sufficiently enhance rare-class representation.

C. Threshold and Scaling Factor Analysis in E-IRFS

This experiment analyzes the impact of the threshold pa-
rameter and the scaling factor α on the E-IRFS method, eval-
uating their effect on model performance. The formulation in
Equation 4 demonstrates that α controls the aggressiveness
of exponential scaling, while the threshold t determines the
starting point for rebalancing adjustments. By systematically
varying these parameters, we assess their influence on model
accuracy. The results in Table IV and Table V show that
increasing α improves the emphasis on rare categories, but
only when combined with a sufficiently low threshold.

TABLE IV
MAP50 OF E-IRFS ON YOLOV11-NANO WITH VARYING α AND

THRESHOLD VALUES

α \Threshold 0.1 0.01 0.001 0.0001
0.5 0.53 (+17%) 0.49 (+8%) 0.53 (+17%) 0.48 (+6%)
1.0 0.52 (+15%) 0.49 (+8%) 0.52 (+15%) 0.49 (+8%)
2.0 0.48 (+7%) 0.50 (+11%) 0.47 (+4%) 0.55 (+22%)

For example, for the small model YOLOv11-Nano (Table
IV), setting α = 2.0 with t = 0.0001 produces a 22%
improvement in mAP50, outperforming lower α values where
the effect of exponential scaling is weaker. A similar trend is
observed in YOLOv11-Large, where the same configuration
leads to an increase 18%. Lower values of α, such as 0.5 or
1.0, result in more conservative adjustments, which reduce
the ability to compensate for extreme class imbalances. The
improvement at α = 2.0 and a low threshold is due to the ex-
ponential function in Equation 4. When the geometric mean
is small, indicating a rare class, exponentiation amplifies the
repeat factor more significantly, ensuring stronger sampling
weights and better representation in training.

TABLE V
MAP50 OF E-IRFS ON YOLOV11-LARGE WITH VARYING α AND

THRESHOLD VALUES

α \Threshold 0.1 0.01 0.001 0.0001
0.5 0.52 (+4%) 0.56 (+12%) 0.57 (+14%) 0.54 (+8%)
1.0 0.55 (+10%) 0.58 (+16%) 0.53 (+6%) 0.57 (+14%)
2.0 0.55 (+10%) 0.54 (+8%) 0.57 (+14%) 0.59 (+18%)

To evaluate the effect of threshold selection in E-IRFS
against RFS and IRFS, we fixed α = 2.0 and varied the
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Fig. 2. Comparison of rare category detection performance on our custom testset for YOLOv11-Nano model.

threshold across different values, comparing the results with
traditional sampling strategies. The results in Table VI show
that RFS and IRFS consistently achieve an 11% increase
in mAP50 regardless of the threshold, indicating that their
sampling adjustments remain unaffected by changes in this
parameter.

In contrast, E-IRFS is highly sensitive to threshold selec-
tion, with performance improving as the threshold decreases.
This sensitivity arises from its exponential weighting mech-
anism, which amplifies rare-class sampling more dynami-
cally than the linear adjustments in RFS and IRFS. Lower
thresholds enhance differentiation between class frequen-
cies, improving rare-class representation without excessive
oversampling. As shown in Table IV, E-IRFS achieves its
highest mAP50 at t = 0.0001, where the exponential function
optimally balances sampling rates. At higher thresholds, sam-
pling becomes more uniform, reducing rebalancing benefits
and causing performance fluctuations. This highlights the
importance of carefully selecting α and t for long-tailed
object detection.

TABLE VI
COMPARISON OF MAP50 FOR RFS, IRFS, AND E-IRFS WITH α = 2.0

AT DIFFERENT THRESHOLD VALUES ON YOLOV11-NANO.

Threshold RFS IRFS E-IRFS (α = 2.0)
0.1 0.50 (+11%) 0.50 (+11%) 0.48 (+7%)
0.01 0.50 (+11%) 0.50 (+11%) 0.50 (+11%)

0.001 0.50 (+11%) 0.50 (+11%) 0.47 (+4%)
0.0001 0.50 (+11%) 0.50 (+11%) 0.55 (+22%)

D. Impact of Re-Balancing Methods on Class-Wise Perfor-
mance

The evaluation of re-balancing methods at the class level
provides a more precise insights into their effectiveness in
improving detection across underrepresented categories. The
results in Tables VII and VIII indicate that E-IRFS achieves
the most significant improvements, particularly for minority
classes such as Lake and Fire.

For the Lake category, mAP50 increased from 0.02 to
0.09, corresponding to a relative improvement of 350%, while
mAP50− 95 increased from 0.009 to 0.032, reflecting a
gain of 255%. Similarly, the Fire class showed an increase

TABLE VII
CLASS-WISE MAP-50 PERFORMANCE IN YOLOV11-NANO SETUP

Class Baseline Aug Aug+RFS Aug+IRFS Aug+E-IRFS
Fire 0.32 0.43(+34%) 0.44(+37%) 0.44(+37%) 0.53(65%)

Smoke 0.80 0.81(+1%) 0.82(+2%) 0.82(+2%) 0.82(+2%)
Human 0.67 0.65(-3%) 0.67(+0%) 0.67(+0%) 0.78(+16%)
Lake 0.02 0.05(+150%) 0.06(+200%) 0.06(+200%) 0.09(+350%)

of 65% in mAP50 and 31% in mAP50− 95. The Human
class benefited from an increase 16% in mAP50 and an 18%
increase in mAP50− 95, indicating balanced improvements.
In contrast, the Smoke class exhibited only marginal improve-
ments, suggesting that it was already well-represented in the
dataset.

TABLE VIII
CLASS-WISE MAP(50-95) PERFORMANCE IN YOLOV11-NANO SETUP

Class Baseline Aug Aug+RFS Aug+IRFS Aug+E-IRFS
Fire 0.165 0.191(+15%) 0.213(+29%) 0.213(+29%) 0.217(31%)

Smoke 0.387 0.465(+20%) 0.456(+17%) 0.456(+17%) 0.404(+4%)
Human 0.299 0.282(-5%) 0.310(+3%) 0.310(+3%) 0.353(+18%)
Lake 0.009 0.012(+33%) 0.016(+77%) 0.016(+77%) 0.032(+255%)

These results confirm that E-IRFS effectively enhances
model performance on underrepresented classes, making
it more adaptable to long-tailed distributions. Unlike RFS
and IRFS, which provide uniform improvements across
categories, E-IRFS dynamically adjusts sampling weights,
leading to a more pronounced effect on classes with fewer
instances. This supports its suitability for applications where
rare object detection is critical.

E. Generalization to Balanced Datasets

To evaluate the applicability of E-IRFS beyond long-tailed
scenarios, we tested it on two balanced datasets: CIFAR-
10 [15] and Caltech-101 [16]. These experiments aim to
determine whether the exponential weighting mechanism in-
troduces performance degradation or bias when class distribu-
tions are approximately uniform. We trained the YOLOv11-
Nano classification model on both datasets using baseline and
E-IRFS configurations with α = 0.5, α = 1.0, and α = 2.0,
fixing the threshold at t = 0.1.



TABLE IX
ACCURACY ON BALANCED DATASETS (TOP-1 / TOP-5)

Dataset Method Top-1 Acc Top-5 Acc

CIFAR-10

Baseline 0.802 0.989
E-IRFS (α = 0.5, t = 0.1) 0.802 0.989
E-IRFS (α = 1.0, t = 0.1) 0.802 0.989
E-IRFS (α = 2.0, t = 0.1) 0.802 0.989

Caltech-101

Baseline 0.920 0.986
E-IRFS (α = 0.5, t = 0.1) 0.927 0.986
E-IRFS (α = 1.0, t = 0.1) 0.924 0.985
E-IRFS (α = 2.0, t = 0.1) 0.920 0.984

As shown in Table IX, E-IRFS maintains performance
parity with the baseline across all settings on CIFAR-10 and
Caltech-101. Minor fluctuations in Caltech-101 are within
acceptable bounds and do not suggest systematic degradation.
These results confirm that E-IRFS does not introduce bias
or degrade performance on balanced datasets, supporting its
robustness and generalization beyond imbalanced scenarios.

V. CONCLUSION

This paper introduces E-IRFS, a novel rebalancing strategy
designed to improve rare-class detection in long-tailed object
detection. The experimental results demonstrate that E-IRFS
outperforms existing methods in detecting rare objects such
as fires and water bodies in UAV-based monitoring. E-IRFS
is especially beneficial for lightweight models with fewer
parameters, such as YOLOv11-Nano, since they lack the
capacity to learn long-tailed distributions effectively, mak-
ing them more dependent on data sampling strategies. E-
IRFS benefits from a lower threshold and a higher scaling
factor, allowing more adaptive sampling adjustments. Be-
yond its empirical improvements, it provides a structured
approach to addressing class imbalance, with differentiation
between frequent and rare categories, while highlighting the
importance of adaptive sampling strategies. E-IRFS shows
sensitivity to selection of α and t, but our results indicate
that effective values can generalize across datasets with
minimal tuning. Future work may explore the extension
of E-IRFS to other recognition tasks and the integration
of it with additional augmentation techniques to improve
its performance in highly imbalanced datasets. Furthermore,
a critical direction involves investigating methodologies to
determine the optimal α and t parameters based on statistical
priors from new datasets. This would reduce the need for
extensive manual tuning, thus enhancing the practicality and
applicability of the method across diverse domains.
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