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Abstract

Differing from traditional 2D videos, volumetric videos pro-

vide true 3D immersive viewing experiences and allow view-

ers to exercise six degree-of-freedom (6DoF) motion. How-

ever, streaming high-quality volumetric videos over the In-

ternet is extremely bandwidth-consuming. In this paper, we

propose to leverage 3D super resolution (SR) to drastically

increase the visual quality of volumetric video streaming. To

accomplish this goal, we conduct deep intra- and inter-frame

optimizations for off-the-shelf 3D SR models, and achieve

up to 542× speedup on SR inference without accuracy degra-

dation. We also derive a first Quality of Experience (QoE)

model for SR-enhanced volumetric video streaming, and vali-

date it through extensive user studies involving 1,446 subjects,

achieving a median QoE estimation error of 12.49%. We then

integrate the above components, together with important fea-

tures such as QoE-driven network/compute resource adapta-

tion, into a holistic system called YuZu that performs line-rate

(at 30+ FPS) adaptive SR for volumetric video streaming. Our

evaluations show that YuZu can boost the QoE of volumetric

video streaming by 37% to 178% compared to no SR, and

outperform existing viewport-adaptive solutions by 101% to

175% on QoE.

1 Introduction

Volumetric video is an emerging type of multimedia con-

tent. Unlike traditional videos and 360° panoramic videos [28,

53] that are 2D, every frame in a volumetric video consists of

a 3D scene represented by a point cloud or a polygon mesh.

The 3D nature of volumetric video enables viewers to ex-

ercise six degree-of-freedom (6DoF) movement: a viewer

can not only “look around” by changing the yaw, pitch, and

roll of the viewing direction, but also “walk” in the video by

changing the translational position in 3D space. This leads to

a truly immersive viewing experience. As the key technology

of realizing telepresence [49], volumetric video has registered

numerous applications. They can be viewed in multiple ways:

through VR/MR (virtual/mixed reality) headsets or directly

on PCs (similar to how we play 3D games).

Despite the potentials, streaming volumetric videos over the

Internet faces a key challenge of high bandwidth consumption.

High-quality volumetric content requires hundreds of Mbps

bandwidth [27, 71]. To improve the Quality of Experience

* Current affiliation: University of Wisconsin, Madison.

(QoE) under limited bandwidth, prior work has mostly fo-

cused on viewport-adaptive streaming (i.e., mainly streaming

content that will appear in the viewport) [27, 41, 50]. How-

ever, they are ineffective when the entire scene falls inside the

viewport. They also require 6DoF motion prediction that is

unlikely to be accurate for fast motion. Some other proposals

explored remote rendering [26,52] (e.g., having an edge node

transcode 3D scenes into regular 2D frames). However, they

require not only 6DoF motion prediction, but also edge/cloud-

side transcoding that is difficult to scale, as summarized in

Table 1.

In this paper, we employ a different and orthogonal ap-

proach toward improving the QoE of volumetric video stream-

ing through 3D super resolution (3D SR). SR was initially de-

signed for improving the visual quality of 2D images [21, 65].

Recently, researchers in the computer vision community de-

veloped SR models for point clouds [43, 61, 63, 70]. This

inspires us to employ SR for volumetric video streaming, as

each frame of a volumetric video is typically either a point

cloud or a 3D mesh.1 Although there have been recent success-

ful attempts on applying SR to 2D video streaming [22,39,68],

3D-SR-enhanced volumetric video streaming is unique and

challenging due to the following reasons.

● There is a fundamental difference between pixel-based 2D

frames and volumetric frames consisting of unstructured 3D

points, making processing volumetric videos (even without

SR) vastly different from 2D videos.

● Due to its 3D nature, the computation overhead of 3D SR is

very high. We apply off-the-shelf 3D SR models to volumetric

videos [1], and find that the runtime performance of 3D SR is

unacceptably poor – achieving only ∼0.1 frames per second

(FPS) on a PC with a powerful GPU. In contrast, 2D SR

can achieve line-rate upsampling by simply downscaling the

model [68], but we find that only doing model downscaling is

far from being adequate for line-rate 3D SR (i.e., at 30+ FPS).

● Given its recent debut, there lacks research on basic in-

frastructures such as tools and models supporting volumetric

video streaming. For example, there is no QoE model for

volumetric videos that can guide bitrate adaptation or critical

SR parameter selection; the wide range of factors affecting

the QoE make constructing such a model quite challenging.

● There are other practical challenges to overcome, such as a

lack of color produced by today’s 3D SR models.

To address the above challenges, we begin by developing to

1We focus on point-cloud-based volumetric videos in this work, but the

key concepts of YuZu also apply to mesh-based volumetric videos.
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Schemes Refs Advantages (⊕⊕⊕) and Disadvantages (⊖⊖⊖)

Direct Streaming N/A ⊕⊕⊕ Easy to implement, best QoE (if bandwidth is sufficient).⊖⊖⊖ Highest network bandwidth (BW) usage.

Direct + VA [27, 41] ⊕⊕⊕ Lower BW usage.⊖⊖⊖ BW saving depends on user’s motion, QoE depends on motion prediction.

Direct + SR YuZu ⊕⊕⊕ Good QoE, further lower BW usage, adaptively trades compute resource for BW.⊖⊖⊖ Requires training.

Remote Rendering [26, 52] ⊕⊕⊕ Lowest BW usage.⊖⊖⊖ QoE depends on motion prediction, need edge support (poor scalability).

Table 1: Four categories of volumetric video streaming approaches (VA = Viewport Adaptation; SR = Super Resolution).

our knowledge a first QoE model for assessing SR-enhanced

volumetric video streaming. The model takes into account

a variety of factors that may affect the QoE, such as video

resolution (i.e., point density)2, viewing distance, upsampling

ratio, SR-incurred distortion, and QoE metrics from tradi-

tional video streaming. We validate our model by conducting

two IRB-approved user studies involving 1,446 voluntary par-

ticipants from 40 countries, using a major genre of volumetric

content, i.e., portraits of single/multiple people. The validation

results confirm its accuracy, with a median QoE estimation

error of 12.49%. Our user studies offer definitive evidence

that 3D SR can significantly boost the QoE of volumetric

video streaming.

Next, we design, implement, and evaluate YuZu, which

is to our knowledge a first SR-enhanced volumetric video

streaming system. At its core, YuZu deeply optimizes the

end-to-end upsampling pipeline in three aspects: intra-frame

SR, inter-frame SR, and network-compute resource manage-

ment, whose synergy helps drastically improve the runtime

performance of SR while retaining the inference accuracy.

For intra-frame SR, our approaches are not limited to

generic optimizations for deep learning models such as modi-

fying SR models’ structures for fast-paced SR. More impor-

tantly, we consider the factors that are unique to 3D SR and

its data representation: we design a mechanism that leverages

the low-resolution content (i.e., the input to the SR model,

which is typically discarded after being fed into the model)

to reduce the SR model complexity; we also trim the pre-

processing and post-processing stages of 3D SR and tailor

them to volumetric video streaming. Note that these optimiza-

tions are generic, applicable to all the 3D SR models we have

investigated [43, 61, 63, 70].

For inter-frame SR, YuZu speeds up SR by caching and

reusing 3D SR results across consecutive frames. Realizing

that none of the 2D inter-frame encoding techniques can be

directly applied to volumetric videos, we design an effec-

tive inter-frame content reference scheme for SR-enhanced

point cloud streams, followed by robust criteria determining

whether SR results can be reused between two frames. We

then extend reusing SR results from two to multiple con-

secutive frames through a dynamic-programming-based op-

timization. The synergy of the above intra- and inter-frame

acceleration schemes fills the huge gap between off-the-shelf

3D SR models’ performance and what is required for line-rate

upsampling of point cloud streams.

YuZu further performs network-compute resource man-

2The resolution of a point cloud is defined as its point density; the resolu-

tion of a volumetric video is the avg. resolution of its point cloud frames.

agement through making judicious decisions about the qual-

ity level of the to-be-fetched content and its upsampling ratio.

These two decision dimensions are subject to the dynamic net-

work bandwidth and limited compute resources, respectively,

which need to be jointly considered given their complex trade-

offs – a unique challenge compared to traditional adaptive

bitrate (ABR) video streaming. YuZu takes a QoE-driven ap-

proach by maximizing the utility function derived from our

QoE model. To solve the underlying optimization problem

in real time, we develop a hybrid, two-stage algorithm that

employs coarse-grained and fine-grained search at different

time to efficiently find a good approximate solution. In addi-

tion, YuZu performs fast colorization of SR results through

efficient nearest point search.

We implement the above components and integrate them

into YuZu in 10,848 lines of code. Our extensive evalua-

tions indicate that YuZu can achieve line-rate, adaptive, high-

quality 3D SR. We highlight key evaluation results as follows.

●Our user study suggests that 3D SR can boost the volumetric

video QoE by 37% to 178% compared to no SR.

● Our optimizations speed up 3D SR by 140× to 542× and

reduce GPU memory usage by 68% to 90% with no accuracy

degradation, compared to the vanilla SR models [43, 61].

● Compared to a recently proposed viewport-adaptive volu-

metric video streaming system [27], YuZu improves the QoE

by 100.6% to 174.9%.

To summarize, we make the following contributions.

●We build an empirical QoE model for SR-enhanced volu-

metric videos, and validate it through large-scale user studies

involving 1,446 participants. We build our models using volu-

metric content of single/multiple human portraits, a major ap-

plication of volumetric video streaming. Note that the model

can be applied to non-SR volumetric videos belonging to the

same genre, with an SR ratio of 1.

●We propose and design YuZu, an SR-enhanced, QoE-aware

volumetric video streaming system.

●We implement YuZu, and conduct extensive evaluations for

its QoE improvement and runtime performance.

2 Background and Motivation

Recently, the computer vision community extended SR to

static point clouds [43, 61, 63, 70]. When applied to a video v,

SR trains offline a deep neural network (DNN) model M that

upsamples low-resolution frames L(v) to high-resolution ones

H(v), using the original (high-resolution) frames F(v) for

training. In the online inference, the server sends M and L(v)
to the client, which infers H(v) =M(L(v)). SR leverages the

overfitting property of DNN to ensure that H(v) is highly
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similar to F(v). It achieves bandwidth reduction (or QoE

improvement when bandwidth remains the same) since the

combined size of M and L(v) is much smaller than F(v).
We start with a straightforward approach: applying PU-

GAN [43], a state-of-the-art 3D SR model, to upsample every

point cloud frame of a volumetric video. PU-GAN operates

by dividing the entire point cloud of a frame into smaller

patches, each consisting of a subset of points. Both SR train-

ing and inference are performed on a per-patch (as opposed to

a per-frame) basis, i.e., each patch is upsampled individually.

Its DNN model is based on a generative adversarial network

(GAN) and realizes three key stages: feature extraction, fea-

ture expansion, and point set generation.

We next describe a case study using PU-GAN to motivate

YuZu. Our testing video was captured by three depth cameras.

It has 3,622 frames, each consisting of ∼100K points depicting

a performing actor. We use all its frames to train a PU-GAN

model. We set the SR ratio (i.e., upsampling ratio) to 4, mak-

ing the input and output point clouds consist of roughly 25K

and 100K points, respectively. We have both positive and neg-

ative findings from this case study. On the positive side, the

model can accurately reconstruct each individual frame, i.e.,

each upsampled point cloud is highly similar to the original

one in terms of the geometric structure, as quantified by the

Earth Mover’s Distance (EMD [54]):

LEMD(I,G) = min
φ∶I→G

1

∣I∣
∑
x∈I

∣∣x−φ(x)∣∣2 (1)

where I and G are the upsampled point cloud and the ground

truth, respectively; φ ∶ I→G is a bijection from the points in

I to those in G. The average EMD value across all frames is

1.47cm, which confirms good upsampling accuracy [43]; it is

also verified by our IRB-approved user studies (§4.2). Also

encouragingly, we find that SR indeed achieves significant

bandwidth savings. For this 2-minute video, the compressed

sizes of F(v), M, and L(v) are 1.40 GB, 560 KB, and 0.36

GB, respectively, leading to a bandwidth reduction of 74.2%.

Despite the above encouraging results, we notice three

major issues from the above case study.

● A Lack of Quality-of-Experience (QoE) Model. For tra-

ditional 2D video streaming, there exist numerous studies on

modeling the viewer’s QoE [15, 18, 69]. In contrast, volumet-

ric videos are still in their infancy. There is a lack of generic

QoE models that researchers can leverage, not to mention a

lack of understanding of how SR impacts QoE.

●Unacceptably Poor Runtime Performance. 3D SR models

are computationally much more heavyweight than 2D SR

models. When applying PU-GAN to the above video, the

runtime performance is extremely poor. On a machine with

an NVIDIA 2080Ti GPU, the upsampling FPS is only 0.1,

far below the desired FPS of at least 30. Besides, the GPU

memory usage of PU-GAN is 7GB (out of the 11GB available

memory of 2080Ti). This is one reason why all the off-the-

shelf 3D SR models operate on a per-patch basis, as this saves

memory compared to processing a full frame.

● No Color Support. We find that no existing 3D SR model

can restore the color information of upsampled point cloud.

Note that the last two limitations are common in that they

also apply to all other 3D SR models for point clouds that we

have examined, such as MPU [61] and PU-Net [70].

3 YuZu Overview

YuZu is to our knowledge the first SR-enhanced volumetric

video streaming system. It streams video-on-demand volumet-

ric content stored on an Internet server to client hosts. On the

server side, the volumetric video is divided into chunks each

consisting of a fixed number of frames (i.e., point clouds en-

coded by schemes such as Octree [34,46] and k-d tree [35,44]).

Each chunk is encoded into multiple versions with different

resolutions (i.e., point densities). The SR model training and

volumetric content preprocessing (e.g., patch reuse computa-

tion, see §5.2) are performed offline on the server side. Similar

to a typical DASH server, the YuZu server is stateless (and

thus scalable), and all the streaming logic runs on the client

side. As shown in Figure 1, the client fetches from the server

the video chunks, which can possibly be at a low resolution.

Since 3D SR models typically operate on a per-patch basis,

the client segments each frame into patches, upsamples them

through 3D SR, efficiently colors them (§5.4), and renders

them to the viewer.

To achieve line rate SR, YuZu employs novel optimizations

tailored to SR-enhanced volumetric video streaming. Regard-

ing intra-frame optimizations, off-the-shelf 3D SR models

are strategically adapted; low-resolution patches before SR

are properly leveraged instead of being discarded; and the

patch generation is accelerated (§5.1). For inter-frame opti-

mizations, previous SR results are judiciously reused (§5.2).

A crucial decision that YuZu must make is to determine

what resolution (quality level) to fetch for each chunk, as well

as which SR ratio to apply for upsampling each patch, subject

to the resource constraints jointly imposed by the network

and computation. YuZu addresses this through a principled,

efficient, and QoE-driven discrete optimization framework

(§5.3). The framework utilizes a first-of-its-kind QoE model

that we derive from ratings of 1,446 real users (§4).

4 QoE Model for Volumetric Videos

For SR-enhanced volumetric video streaming, its QoE is af-

fected by a wide range of factors. The large space formed

by these factors and their interplay make constructing QoE

models much more challenging than conventional videos.

4.1 An Empirical QoE Model

We first enumerate factors that may affect the QoE for SR-

enhanced volumetric video streaming. They are derived based

on the domain knowledge of SR and our communication with

other volumetric video viewers.
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Figure 1: The system architecture of YuZu.

Age
18-25: 21.8%, 26-30: 29.0%,

31-35: 20.4%, 35+: 28.8%

Gender
Male: 60.3%, Female: 39.2%,

Other: 0.5%

US: 55.0%, IN: 28.1%,

Country BR: 5.0%, IT: 2.7%,

(40 Total) UK: 1.2%, DE: 1.0%,

CA: 0.9%, Other: 6.1%

Education
Bachelor: 59.1%,

Master: 23.8%, Other: 17.1%

Table 2: Demographics of the 1,446 subjects

in our user studies.

● Point Density. Similar to 2D image resolution, a 3D object

with a higher point density (resolution) contains more details

and thus offers a better QoE.

● Viewing Distance. As the viewing distance increases, a

rendered 3D object becomes smaller in the displayed view,

and is thus less sensitive to quality degradation.

● SR Ratio and Distortion. A higher SR ratio leads to a

higher point density (and thus more QoE gain), but also po-

tentially higher distortions (and thus more QoE loss).

● Artifacts caused by Patches. As described in §2, a typical

3D SR model operates by upsampling individual point subsets

called patches. If patches within a frame have non-uniform

qualities (caused by different SR ratios), the perceived QoE

will be affected.

● Invisibility due to Finite Viewport and Occlusion. Due

to the 3D nature of volumetric videos, a viewer can see only

content that is inside the viewport and not occluded. Outside-

viewport or occluded content brings no impact on the QoE.

● QoE Metrics for Regular Video Streaming. They include

factors such as stall and inter-frame quality switches [69].

Next, we develop an empirical QoE model that considers

the above factors. Since SR is performed on a per-patch basis,

we first model the QoE for each individual patch as:

qi, j = g(di, j,ri, j,δi, j)−h(EMD,δi, j) (2)

where qi, j is the quality of patch j in frame i; di, j is the

patch’s original point density before SR; δi, j is the viewing

distance to the patch; ri, j is the SR ratio of the patch. Eq. 2 has

two terms: g(⋅) considers the patch’s perceived density after

SR, and h(⋅) accounts for the QoE penalty incurred by SR

distortion, quantified by the viewing distance and the EMD

(Eq. 1) between the upsampled patch and the high-quality

patch (ground truth). We empirically define g(⋅) and h(⋅) as:

g(di, j,ri, j,δi, j) =w1(δi, j)×di, j × ri, j (3)

h(EMD,δi, j) =w2(δi, j)×EMD (4)

where w1(δi, j) and w2(δi, j) are weights parameterized on

δi, j. Intuitively, in Eq. 3, after SR, the perceived point density

improves by a factor of ri, j; the QoE gain brought by a higher

point density after SR (Eq. 3) and the QoE penalty caused by

SR distortion (Eq. 4) depend on the viewing distance.

Now given a single frame i, we define its quality Qi as the

average of all its visible patches’ quality values:

Qi =
∑ j vi, jqi, j

∑ j vi, j

(5)

where vi, j ∈ {0,1} is 1 iff the patch is visible, i.e., it falls

inside the viewport and is not occluded by other patches. To

account for the artifacts caused by patches, we define inter-

patch quality switch I
patch
i as the quality variation across the

visible patches within frame i. To account for inter-frame

quality switches, we define inter-frame quality switch I
f rame

i

as the quality change from frame i−1 to frame i:

I
patch
i = StdDev({qi, j ∣∀ j,vi, j > 0}) (6)

I
f rame

i = ∥Qi−Qi−1∥ (7)

For a volumetric video playback, a possible way to model

its overall QoE is a linear combination of Qi, I
patch
i , I

f rame
i ,

and Istall
i (the stall of frame i). We choose a linear form that

is widely used in 2D Internet videos [69]. Thus, we have

QoE =∑
i

Qi−∑

i

µp(δi)I
patch
i

−∑

i

µ f (δi)I
f rame
i

−∑

i

µs(δi)I
stall
i

(8)

Note that depending on the viewing distance, the weights

µp, µ f , and µs may differ (e.g., viewers may be more sensitive

to stalls when watching a scene at a closer distance), so we

parameterize the weights with the viewing distance. In Eq. 8,

δi summarizes the viewing distances to all the patches in

frame i. We empirically choose δi = (∑ j vi, jδi, j)/(∑ j vi, j).
Also note that the above model is generic and applicable to

non-SR-enhanced and non-patch-based volumetric videos as

it encompasses special cases without using SR (ri, j=1) or

patches (I
patch
i =0).

4.2 Model Validation through User Studies

We next conduct user studies with two purposes: validating

our QoE model and deriving the model parameters. Our QoE

model considers many factors as described in §4.1. The high-

level approach of the user study is to let participants sub-

jectively rate the QoE for all the combinations of the above

factors’ different degrees of impairments, and then use the
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Scheme 1×1 1×2 1×3 1×4 2×1 2×2 3×1 4×1

Pt. density 25% 25% 25% 25% 50% 50% 75% 100%

SR ratio - ×2 ×3 ×4 - ×2 - -

Table 3: 8 impaired versions (except 4×1) of a video segment. In

scheme m×n, m is the point density level and n is SR ratio.

Videos: {Long Dress, Loot [1]; Band, Haggle [36]}

Avg. frame quality Qi: 7 values uniformly selected from Table 3

Avg. distance disti, j: {1m, 2m, 3m, 4m}

Avg. inter-patch switch I
patch
i

: {0.00,0.45,0.90}

Avg. inter-frame switch I
f rame
i

: {0.00,0.45,0.90}

Avg. stall Istall
i : {0.00,0.01,0.03}

Table 4: The factors and their values selected for model validation.

subjects’ ratings to train/validate our QoE model. We obtained

IRB approvals for our studies. Instead of performing in-person

studies, we conduct both studies online by letting users watch

pre-generated videos capturing the rendered viewports (with

impairments). We take this approach because: (1) it allows

vastly scaling up the study, (2) it helps get diverse users world-

wide, and (3) the IRB forbids in-person user studies during

COVID-19. We have collected responses from 1,446 subjects,

whose demographics are shown in Table 2.

We start by studying the QoE gain brought by SR. We

have collected 512 subjects’ responses with a total number

of 57,344 ratings. The key finding is that SR can effectively

boost the QoE. For example, at 1m, compared to 1×1, the

(user-rated) QoE increases by 37%, 75%, 150% for 1×2, 1×3,

and 1×4, respectively; 2×2 improves the QoE by 178% com-

pared to 2×1. The details can be found in Appendix A.

Next, we validate the overall QoE model (Eq. 8). We choose

four videos: Long Dress showing a dancing female, Loot

showing a speaking male, Band showing three people play-

ing instruments, and Haggle showing three people debating.

Long Dress and Loot are obtained from the 8i dataset [1], each

consisting of 800K points per frame for 10 seconds. Band

and Haggle are from the CMU Panoptic dataset [36], each

consisting of 300K and 100K points per frame, respectively;

we select 10-second segments for our study. For each video,

we create 8 versions listed in Table 3. Note that since the par-

ticipants need to watch a large number of impaired copies, the

video length (10 seconds) has to be short. Also note that the

videos have different point densities, as we want to make the

QoE model generic, applicable to different resolutions. We

will experimentally verify this shortly. We use our optimized

PU-GAN algorithm (details in §5.1) to perform upsampling

and create video clips at 4K resolution for four viewing dis-

tances: 1m, 2m, 3m, and 4m, which are determined from a

separate IRB-approved user study whose details are described

in Appendix B. To maintain a fixed viewing distance d, we

display the viewport at d meters in front of and facing the

viewer. We design a survey using Qualtrics [11] and publish

it on Amazon Mechanical Turk (AMT) [2].

We study the impact of all the factors in Eq. 8 on the QoE.

Table 4 lists them and their impairment levels. They lead to

a total of 756 combinations for each video segment. Since

letting subjects perform (756
2
) pairwise comparisons is infea-

sible, for each combination, we generate one video clip by

putting the impaired version and the high-quality “ground

truth” version (4×1, I
patch
i = I

f rame
i = Istall

i = 0, same viewing

distance) side by side, in a random order. To generate the im-

paired version, we randomly add perturbations to the patches’

quality levels to match the corresponding I
patch
i and I

f rame
i

values, and randomly inject stalls to match Istall
i . We then ask

each subject to watch 100 randomly selected video clips from

the 756 clips of a randomly selected video segment. After

watching each clip, the subject is asked to rate which side

provides a better QoE through 7 choices (“left looks {much

better, better, slightly better, similar to, slightly worse, worse,

much worse} than right”) If the impaired version is {similar

to, slightly worse, worse, much worse} than the ground truth,

we give the impaired version a score of {3,2,1,0}, respectively.

We have collected 934 subjects’ responses with a total num-

ber of 93,400 ratings for the above survey published on AMT.

For each viewing distance, we use the subjects’ ratings to cal-

culate the average score of each of the 756 impaired clips on a

scale from 0 to 3, and use it as the QoE ground truth. We then

perform 10-fold cross-validation to validate our QoE model

(Eq. 8, trained using multi-variable linear regression) for each

viewing distance. Figure 2 plots the CDF of the QoE predic-

tion errors at each viewing distance. The median prediction

error for 1m, 2m, 3m, 4m is 11.4%, 12.2%, 12.8%, and 12.9%,

respectively. The (Person, Spearman) correlation coefficients

between the ground-truth QoE score and the predicted QoE

score are also high: (0.89, 0.89) at 1m, (0.87, 0.88) at 2m,

(0.87, 0.88) at 3m, and (0.85, 0.85) at 4m.

The above QoE models are trained from all four videos.

Table 5 shows the Spearman correlation coefficients between

the ground-truth QoE and cross-video prediction results. We

use the data of three videos to train a QoE model and use it to

predict the QoE for the remaining video. The results indicate

that the same QoE model and its parameters are applicable to

volumetric content of the same genre (portraits of people – a

major application of volumetric streaming – in our case). We

also confirm that most parameters trained from different video

segments are indeed quite similar, in spite of the segments’

different point densities. When applied to other genres, the

model’s parameters may differ, as to be explored in our future

work (the same happens to 2D videos [68]). Table 6 lists our

final model’s parameters trained using the entire dataset. The

model will be used by YuZu.

5 System Design of YuZu

We now detail the system design of YuZu (Figure 1) that

addresses the challenges we identified in §2.

5.1 Accelerating SR Upsampling

To accelerate 3D upsampling, we take a principled approach

by exploring three orthogonal directions:
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1m 0.55 27.80 0.52 0.40 170.5

2m 0.42 39.83 1.05 0.91 149.8

3m 0.27 26.63 1.23 1.04 176.7

4m 0.16 17.17 0.47 0.06 304.1

Figure 2: QoE prediction er-

ror using our model.

Table 5: Spearman correlation coefficient between QoE ground

truth and cross-video prediction. XY Z ⇒W means using the

model trained from videos X , Y , and Z to predict video W ’s QoE.

Table 6: Parameters of the

final model used in YuZu.

25K Pts/
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75K Pts/
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100K Pts/
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3X SR

Figure 3: Using a 3× SR model to realize 4× SR.

● Model Optimization. How to simplify the upsampling

logic while retaining the inference accuracy? (§5.1.1)

● Data Reduction. How to strategically feed less data to SR

models with negligible impact on QoE? (§5.2)

● Pre-processing and Post-processing Trimming. How to

simplify the sophisticated pre- and post-processing stages

without incurring side effects on inferences? (§5.1.2)

Our optimizations can apply to all 3D SR models we have

investigated [43,61,63,70] and they are video-agnostic. In §7,

we demonstrate the optimization results for two SR models:

PU-GAN [43] and MPU [61].

5.1.1 SR Model Optimization

We take a “top-down” approach by first optimizing the model

as a whole and then fine-tuning its detailed structure. For most

machine learning models (including 2D SR), after performing

an inference, the input is no longer needed and will be dis-

carded. Our investigated 3D SR models [43, 61, 63, 70] make

no exception. We instead make a fundamental observation

regarding 3D point clouds. Different from a 2D image, a point

cloud is a set of unstructured points, which means that point

clouds can be merged via a simple set union operation. We

also note that 3D SR’s output points refine and differ from

the input. Based on this key insight, we propose a simple yet

effective optimization: YuZu merges the input low-density

point cloud with the SR output in order to improve the visual

quality, or to reduce the computation overhead while main-

taining the same upsampling ratio. For example, as shown

in Figure 3, to achieve 4× upsampling, instead of using a 4×

SR model, we can use a (computationally more efficient) 3×

SR model and merge the input with the output. Since SR ex-

ploits the overfitting nature of DNN, the spatial distributions

of upsampled points and the ground truth are expected to be

highly similar. By leveraging the input data and downgrading

the SR ratio from 4× to 3×, we can achieve an acceleration

of up to ∼35% without hurting the SR accuracy (Figure 6).

Note that in offline training, the loss function is computed

after merging the input low-density point cloud with the SR

output. This makes the trained models aware of and adaptive

to the merging process, improving the upsampling accuracy

compared to computing the loss function before that.

Next, we explore modifying 3D SR model’s DNN structure

for inference acceleration. By profiling the inference time of

PU-GAN, we find that its three stages, feature extraction, fea-

ture expansion, and point set generation, take 78.3%, 19.3%,

and 2.4% of execution time, respectively (4× SR). Within the

feature extraction stage that dominates the runtime overhead,

most operations are convolutions. We make the same observa-

tion for other 3D SR models that we investigated [61, 63, 70].

To accelerate convolutions, we replace the original feature

extraction, which (e.g., in the case of PU-GAN) enhances

the solution in PointNet++ [51] through dynamic graph con-

volution [56], with a recent proposal called spherical kernel

function (SKF) [42]. SKF partitions a 3D space into multiple

volumetric bins and specifies a learnable parameter to con-

volve the points in each bin. In contrast to continuous filter

approaches (e.g., multilayer perceptron) used in existing SR

models, SKF is a discrete metric-based spherical convolu-

tional kernel, and is thus computationally attractive for dense

point clouds. Moreover, it is applicable to all the 3D SR mod-

els we examined. We find that SKF brings no degradation to

the upsampling accuracy (§7.3). One reason may be that the

kernel asymmetry of SKF facilitates learning fine geometric

details of point clouds [42].

In addition to utilizing SKF, we conduct layer-by-layer

profiling [22, 66] to fine-tune the SR model’s performance-

accuracy tradeoff. Take PU-GAN as an example. We remove

the last two dense layers of feature extraction and several

heavyweight convolution layers in the feature expansion stage,

as they make limited contributions to the upsampling accu-

racy. We also judiciously remove a small number of expanded

features to reduce the GPU memory footprint. For other 3D

SR models, their model tuning follows a similar approach.

5.1.2 Trimming Pre- and Post-Processing

Recall from §2 that to ensure a manageable model complexity,

a 3D SR model divides a point cloud into small patches as

basic units for upsampling. We discover that as an important

pre-processing step, the patch generation process incurs a high

overhead. For example, PU-GAN generates the patches by

applying kNN to the seeds created by downsampling. Since

the generated patches may overlap, after upsampling, PU-
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GAN needs to perform post-processing: it applies the furthest

point sampling [48] to remove duplicated points.

To mitigate the above overhead, YuZu adopts a simple

patch generation method. It divides the space into cubic cells,

and assigns each non-empty cell (i.e., a cell that contains

points) to a patch. Compared to the default patch genera-

tion approaches used by PU-GAN and other 3D SR frame-

works [43, 61], our approach runs very fast; it also brings no

overlap among patches, thus eliminating the post-processing

step (i.e., overlap removal). In addition, the patches now

have a simple geometry shape, so that they can be indexed,

searched, and manipulated at runtime. Meanwhile, We find

that our patch generation approach does not sacrifice the up-

sampling accuracy and may even improve the accuracy com-

pared to vanilla PU-GAN and MPU (§7.3). This is likely

because cubic cells provide a more consistent structure for

the patches, making it easier to perform SR. We also investi-

gate several other patch generation methods based on Voronoi

diagram [24] and 3D SIFT [55], but none outperforms our

cubic-cell-based approach from either the performance or the

accuracy perspective.

5.2 Caching and Reusing SR Results

Videos usually exhibit similarities across frames. We find that

volumetric videos make no exceptions. This indicates rich

opportunities for caching and reusing SR results.

At a high level,YuZu reuses SR results based on the similar-

ity between patches, which is the basis of inter-frame encod-

ing. Inter-frame similarity has been extensively studied and

exploited in 2D videos. However, none of the 2D inter-frame

encoding techniques can be directly applied to volumetric

videos due to the fundamental difference between pixel-based

2D frames and volumetric frames consisting of unstructured

points. There are very few studies on 3D inter-frame encod-

ing [37, 46]; they are incompatible with YuZu’s patch-based

upsampling, and incur high complexity hindering line-rate

decoding. Due to the above reasons, we design our own SR

caching/reusing algorithm. Our algorithm is agnostic of and

orthogonal to a specific SR model.

YuZu reuses 3D SR results on a per-patch basis to match

the patch-based upsampling procedure. Recall from §5.1.2

that YuZu generates patches using 3D cubic cells. Let p(i, j)
denote patch j of frame i, and let N(i, j) denote the num-

ber of points in p(i, j). YuZu allows reusing the SR result

of p(i, j) for subsequent consecutive patches at the same lo-

cation, i.e., p(i+1, j), p(i+2, j), and so on. YuZu restricts

reusing patches only at the same location due to two con-

siderations. First, we empirically observe that most patch

similarities indeed occur at the same cell location; this makes

the benefits (in terms of reduced SR overhead) of reusing a

patch belonging to a different cell marginal. Second, allowing

reusing a patch at a different cell will drastically increase the

overhead of pre-computing the caching/reusing decisions.

We now describe YuZu’s SR reuse algorithm. YuZu first

determines offline the similarity of two patches. For each

patch pair (p(i, j), p(i+1, j)), YuZu computes a Weighted

Complete Bipartite Graph [17] B ∶ p(i, j)→ p(i+1, j), which

we find to be suitable for dealing with unstructured points. In

the bipartite graph, there is a directed edge from every point in

p(i, j) to every point in p(i+1, j), and the weight of the edge

is their Euclidean distance. We then calculate the minimum-

weight matching (MWM) [57] for the graph, i.e., finding

N(i, j) edges such that (1) these edges share no common

vertices (points), and (2) the sum of their weights is minimized.

Intuitively, the MWM identifies a transformation from p(i, j)
to p(i+1, j) with a minimum moving distance for the points.

The Hungarian algorithm [17] that computes the MWM has

a complexity of O(N4) where N =max{N(i, j),N(i+1, j)}.
We instead employ a faster O(N2) approximation algorithm

that is found to work well in practice.3

We call every edge in the MWM a point motion vector

(PMV). A PMV differs from a 2D video’s motion vector,

which represents a macroblock in a frame based on the posi-

tion of the same or a similar macroblock in another reference

frame. Leveraging the PMVs, we determine that p(i+1, j)
and p(i, j) are similar if three criteria are satisfied. (1) N(i, j)
and N(i+1, j) differ by no more than ηn%; (2) the average

length of all the PMVs is smaller than ηa; (3) the top 90-

percentile of the shortest PMV is smaller than ηv. These three

criteria dictate that p(i, j) and p(i+1, j) have a similar num-

ber of points, and the points’ collective motions are small.

Figure 4 shows how ηa impacts EMD and the patch reuse

ratio (% of patches that can reuse a previous SR result). As

shown, increasing ηa increases the reuse ratio, but meanwhile

decreases the accuracy. According to Figure 4, we set ηa to

0.01m to balance the performance and accuracy. Using similar

methods, we empirically set ηn=10 and ηv=0.01m.

Next, we consider how to reuse an SR result across mul-

tiple patches belonging to consecutive frames. We define

sim j(i1, i2) ∈ {0,1} to be 1 if and only if p(i1, j) and p(i2, j)
are similar, i.e., satisfying the above three criteria where

i2 > i1. Figure 5 shows an example of 6 consecutive patches

at location j where ∀1 ≤ x < y ≤ 6 ∶ sim j(x,y) = 0 except that

sim j(1,2), sim j(2,3), sim j(2,4), and sim j(2,6) are 1. YuZu

allows a patch’s SR result to be reused across consecutive

patches if they are all similar to the first patch. For example,

Patches 3 and 4 can reuse Patch 2’s SR result. However, YuZu

does not let Patch 6 reuse Patch 2 because sim j(2,5) = 0. We

make this design decision for two reasons. First, we observe

that non-consecutive patches are unlikely to be similar in real

volumetric videos. Second, supporting non-consecutive reuse

requires computing sim j(x,y)∀x < y, making offline video

processing slow.

We develop an algorithm that minimizes the number of

3The approximation algorithm sorts all the edges by their weights in

ascending order. It then adds the edges to the MWM in that order and skips

edges that share points with an existing edge in the matching, until every

point in p(i, j) or every point in p(i+1, j) is in the MWM.
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Figure 5: Reusing SR results

across consecutive frames.

patches to be upsampled, to boost the online SR performance.

For example, in Figure 5, the minimum number of patches to

be upsampled is 4: Patches 1, 2, 5, and 6. YuZu efficiently and

optimally solves this through dynamic programming (DP).

Given n patches p(1, j), ..., p(n, j) and their sim j information,

let u(i, j) be the minimum number of patches that need to be

upsampled in {p(i, j), ..., p(n, j)} if we decide to upsample

p(i, j). Then u(i, j) can be derived through DP as:

u(i, j) =min{u(i+1, j), min
i<k≤n∶∀i<t≤k∶sim j(i,t)=1

{u(k+1, j)}}+1

(9)

The RHS of Eq. 9 examines each patch following p(i, j) and

updates u(i, j) if stopping reusing p(i, j) at p(k+1, j) yields

a better u(i, j). The search continues until hitting a patch

that is not similar to p(i, j). Eq. 9 can be solved backwards

starting from u(n+1, j) = 0. The solution is u(1, j).
Since YuZu streams VoD volumetric content, all the above

logic (calculating MWM, sim j, and DP) is performed offline

for each patch location j. Thus, there is no runtime overhead.

The SR reuse decisions are sent to the client as meta data,

which is only 0.5KB per frame for our testing video in §2.

5.3 Network/Compute Resource Adaptation

YuZu adapts to not only the fluctuating network condition

(similar to the job of traditional bitrate adaptation algo-

rithms [45, 64, 69]), but also the available compute resource,

due to the high computation overhead of 3D SR. More impor-

tantly, these two dimensions incur a tradeoff: given a fixed

playback deadline, should YuZu download high-resolution

content, or download lower-resolution content and spend time

upsampling it? Fortunately, our QoE model (§4.1) dictates

how to quantitatively balance this tradeoff.

We first formulate an online network/compute adaptation

problem. The video is divided into n chunks each consist-

ing of f frames. To achieve fine-grained adaptation, each

chunk is further spatially segmented into b blocks (e.g., b=53),

which are the atomic scheduling units in YuZu’s adaptation

algorithm. Each block consists of multiple patches (recall

from §5.1.2 that each patch occupies a cubic cell). At runtime,

YuZu considers all the blocks belonging to a finite horizon

of the next w chunks, and searches for their quality and SR

ratio assignments that maximize the QoE defined in Eq. 8.

This formulation extends the model predictive control (MPC)

scheme [69] that proves to be effective for traditional 2D

video streaming. The solution space is O(8wb) (the 8 possible

assignments are listed in Table 3).

We consider how to efficiently solve the above discrete op-

timization problem. An exhaustive search is clearly infeasible.

Due to the large solution space, even the memorization ap-

proach (FastMPC [69]) is not practical. Another possibility is

a learning-based approach such as Pensieve [45]. However, it

requires offline training and may incur a non-trivial inference

overhead. Moreover, a recent work [64] indicates that rein-

forcement learning based bitrate adaptation solutions do not

necessarily outperform simple buffer-based approaches [33].

To overcome the above challenges, we develop a

lightweight approximation algorithm. It executes in two

stages: first determine the quality and SR ratios of to-be-

downloaded chunks, and then fine-tune the SR ratios before

upsampling. Specifically, in the first stage, before download-

ing each chunk, YuZu performs a coarse-grained search by

assuming that all the blocks in each chunk have the same

quality/SR-ratio assignment. The rationale is that, at this

moment, the playback deadline is still far away (compared

to Stage 2), and thus the network/computation-load uncer-

tainty diminishes the benefits brought by a block-level, fine-

grained search. Meanwhile, this reduces the solution space

from O(8wb) to O(8w). Specifically, we (1) start with a quasi-

optimal solution obtained from an even coarser-grained search

at the granularity of every two consecutive chunks, and (2)

perform pruning by bounding [19]. After the above two opti-

mizations, for a practical w (e.g., w=10), the search time (for

maximizing the QoE in Eq. 8) becomes negligible compared

to the downloading and upsampling time. To estimate Istall
i

in Eq. 8, at runtime, YuZu continuously estimates (1) the net-

work bandwidth using the method in [29] and (2) the local

processing time of a frame using EWMA-based estimation.

The second stage takes place before upsampling each frame.

At this stage, the playback deadline gets closer and thus a

block-level, fine-grained search would be beneficial. To re-

duce the search complexity, YuZu employs Simulated Anneal-

ing (SA) [40] – a probabilistic, greedy approach that approxi-

mates the global optimum. Our algorithm begins with setting

all the blocks’ SR ratios to the lowest (no SR). For each block,

the algorithm tries to increase its SR ratio by one level. If the

resulting QoE of the finite horizon increases, this change is

always accepted; otherwise, we may still accept this change

with a probability of exp(−∆
t
), where ∆ is the decrease of

the QoE and t is the current number of iterations, to avoid a

potential local maximum. To speed up the SA algorithm, we

reduce the finite horizon to two frames: the previous frame

and the current (to be upsampled) frame – we empirically find

that conducting frequent adaptations with a short horizon at

a per-frame basis outperforms infrequent adaptations with a

long horizon at a per-chunk basis in terms of the QoE.
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5.4 Coloring SR Results

As described in §2, none of the 3D SR models we investigated

performs colorization. There are two high-level approaches

for colorization. One is augmenting the SR models by adding

the color component. This may yield good colorization results,

but at the cost of significantly increasing the SR workload.

Given this concern, YuZu takes a much more lightweight

approach: approximating each upsampled point’s color using

the color of the nearest point in the low-density point cloud

(i.e., the input to the SR model). In Appendix C, we present

the details of our method and experimentally confirm that it

can indeed produce good visual quality (with a PSNR >38).

6 Implementation

We integrate all the components in §5 into YuZu, a holistic

system as shown in Figure 1. Our implementation consists of

10,848 lines of code (LoC), with 8,326 LoC for the client.

For offline SR model training, we modify the source code of

PU-GAN [10] and MPU [8] using TensorFlow 1.14 [13] and

custom TensorFlow operators from SPH3D-GCN [12]. Our

pre-trained models are saved in the ProtoBuf format [9] that is

language- and platform-neutral, facilitating future reuse. For

online streaming, we implement the client player on Linux in

C++. We use the Draco Library [4] for encoding and decoding

the point cloud data. We employ Bazel [3] to compile the Ten-

sorFlow 1.14 C/C++ library and use the compiled library to

load and execute the SR models. The client pipelines content

fetching (network-bound), point cloud decoding & patch gen-

eration (CPU-bound), 3D SR (GPU-bound), and colorization

(CPU-bound) of different frames for better performance. The

server is also built in C++, with a custom DASH-like protocol

over TCP for client-server communication.

7 Evaluation

7.1 Experimental Setup

Volumetric Videos. We use four point-cloud-based volumet-

ric videos throughout our evaluations. (1) Our own video. We

capture a volumetric video by ourselves using 3 synchronized

depth cameras. It has 3,622 frames (2 min) each consisting

of ∼100K points. We refer to this video as Lab. We have

used it to motivate YuZu in §2. (2) The Long Dress (Dress)

and Loot videos (§4.2). They have 300 frames (10 sec) each

consisting of ∼100K points. Since they are short, we loop

them (with cold caches) 10 times in our evaluations. (3) The

Haggle video (§4.2). It has 7,800 frames (4’20”) each consist-

ing of ∼100K points. For all four videos, the eight possible

resolution/SR-ratio assignments are listed in Table 3. For each

video, we train their SR models separately. All the videos are

at 30 FPS, encoded by Draco [4]. Unless otherwise mentioned,

the results reported in the remainder of this section are gen-

erated using all four videos. The average encoded bitrate of

Lab, Dress, Loot, and Haggle (4×1) are 96, 108, 118, and 118

Mbps, respectively.

M1 The vanilla 3D SR model (PU-GAN and MPU)

M2 M1 and optimizing patch generation

M3 M2 and layer profiling & pruning

M4 M3 and applying the spherical kernal function (SKF)

M5 M4 and merging SR input with SR output

M6 M5 and caching/reusing SR results

Table 7: SR acceleration methods (cumulative).

3D SR Models. We apply our developed model acceler-

ation techniques to two recently proposed 3D SR models:

PU-GAN [43] and MPU [61]. The two models usually yield

qualitatively similar results, so we show the results of PU-

GAN by default. For certain SR-specific experiments (e.g.,

SR acceleration), we show both models’ results. The models

are trained on a per-video basis. For each video, the total size

of all its models (×2, ×3, and ×4) is around 1.25 MB.

Metrics and Roadmap. We thoroughly evaluate YuZu in

terms of performance, QoE, and resource utilization. §7.2

evaluates the QoE improvement brought by our 3D SR opti-

mizations using both subjective (i.e., real-user ratings) and

objective (e.g., PSNR [30]) metrics. §7.3 focuses on the per-

formance gain of our 3D SR optimizations, from the per-

spectives of resource usage, inference time, and upsampling

accuracy. §7.4 and §7.5 evaluate the end-to-end performance

(e.g., QoE and data usage) of YuZu. §7.6 provides additional

micro benchmarks.

Network Conditions. We consider the following network

conditions that are readily available in today’s wired and

wireless networks. (1) Wired network with stable bandwidth

(e.g., 50, 75, and 100 Mbps) and ∼10ms RTT. (2) Fluctuating

bandwidth captured from real LTE networks. We collect 12

bandwidth traces from a major LTE carrier in multiple U.S.

states at diverse locations (campus, malls, streets, etc.). Across

the traces, their average bandwidth varies from 33.7 to 176.5

Mbps, and the standard deviation ranges from 13.5 to 26.8

Mbps. We use tc [6] to replay these traces (with a 50ms base

RTT typically observed in LTE [38]). (3) We also conduct live

LTE experiments at 9 diverse locations in a U.S. city where

the average bandwidth varies from 41.1 to 52.4 Mbps and the

standard deviation is between 16.6 and 20.7 Mbps.

Devices. We use a commodity machine with an Intel Core

i7-9800X CPU @ 3.80GHz and 32GB memory as the YuZu

server. We use three client hosts: (1) a desktop with an Intel

Core i9-10900X CPU @ 3.70GHz, an NVIDIA GeForce

RTX 2080Ti GPU, and 32GB memory (the default client used

in our evaluations); (2) a desktop with the same CPU, an

NVIDIA GeForce GTX 1660Ti GPU, and 32GB memory;

(3) an NVIDIA Jetson TX2 embedded system board with a

Pascal-architecture GPU of 256 CUDA Cores, 8GB memory,

and a quad-core CPU. They represent a typical high-end PC,

a medium-class PC, and a mobile device, respectively.

User Motion Traces. We collect 32 users’ 6DoF motion

traces when watching the four videos, and replay them in

some experiments. The details about how we collect the mo-

tion traces can be found in Appendix B.
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Figure 6: Memory usage, upsampling FPS, upsampling accuracy, and visual consistency of M1 to M6 (2080Ti desktop).
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Figure 7: Memory usage, upsampling FPS, upsampling accuracy, and visual consistency of M1 to M6 (Jetson TX2 board).
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Figure 8: PSNR of YuZu (left) and vanilla PU-GAN (right).

7.2 SR Quality

Subjective Ratings. Recall that in our user studies, we ask our

participants to rate the SR results generated by our optimized

SR scheme (§5.1). Figure 15 shows that SR brings a signif-

icant boost to the user-perceived QoE. For example, at 1m,

compared to 1×1, the user-rated QoE increases by 37%, 75%,

and 150% for 1×2, 1×3, and 1×4, respectively; 2×2 improves

the QoE by 178% compared to 2×1 (§4.2).

Objective Metric. We also examine how SR improves

PSNR [30], an objective metric of image quality. The method-

ology is as follows. We replay the 32 users’ 6DoF motion

traces of watching the videos under different SR settings, and

save the rendered viewports as images {ISR}. We then repeat

the above process using the original videos (4×1), and capture

the viewport images {I4×1}. We compute the PSNR values

by comparing each image in {ISR} with its corresponding im-

age in {I4×1}. Figure 8 (left) shows the PSNR values for 1×1,

1×2, 1×3, 2×2, 1×4, and 1×4 with reusing SR results (denoted

as “1×4D”) across all the captured viewports. We notice a

significant increase of PSNR from 1×1 to 1×2. The PSNR

also increases marginally from 1×2 to 1×4. Meanwhile, the

PSNR change between 1×4 and 1×4D is negligible, indicat-

ing that caching and reusing SR results brings little impact

on the perceived video quality (but drastic performance gain

as shown in §7.3). The results of Lab are similar. Note that

a PSNR value over 30 typically indicates good visual qual-

ity [22, 58]. Figure 8 (right) shows the PSNR values for the

unmodified PU-GAN model. The qualitatively similar results

between the left and right plots of Figure 8 indicate that our

SR acceleration modifications sacrifice little visual quality.

Note the above results include the colorization step, which is

described and separately evaluated in Appendix C.

Comparing Figure 15 and Figure 8, we notice disparities

between users’ QoE ratings and PSNR values. This indicates

that image qualities of rendered 2D content do not directly

reflect the perceived QoE of volumetric content. This is a key

reason for developing the QoE model for volumetric videos.

7.3 SR Performance Breakdown

We now take a closer look at the effectiveness of each of our

proposed methods for accelerating SR. As listed in Table 7,

M1 denotes the vanilla 3D SR model as the comparison base-

line; M2 to M6 are our proposed SR acceleration methods

in §5.1 and §5.2. They are presented in a cumulative fashion,

i.e., Mi includes every feature of Mi−1 plus some new feature.

The experiments are conducted using two 3D SR models (PU-

GAN [43] and MPU [61]), 100Mbps wired network, 4× SR,

with network/compute resource adaptation (§5.3) disabled.

Figures 6 and 7 show the results of PU-GAN and MPU

on the PC (2080Ti) and Jetson TX2 board, respectively. On

the Jetson board, due to its low compute power (and mobile

devices’ small screen size), we reduce the original video’s

resolution from 100K to 20K points per frame (i.e., the SR

is from 5K to 20K points per frame). We consider four met-

rics: (1) maximum GPU memory usage (on Jetson TX2 we

measure the system memory shared by GPU and CPU), (2)

average upsampling speed (in FPS), (3) inference accuracy

measured in EMD between each upsampled frame and the

ground truth (4×1), and (4) visual consistency measured in

EMD between each consecutive pair of upsampled frames.

As shown, on 2080Ti, for PU-GAN (MPU), compared to

M1, M6 reduces the GPU memory usage by 87% (90%), accel-

erates the upsampling by 307× (542×), improves the average

upsampling accuracy by 24% (14%), and slightly improves

the consistency. Also, each optimization (M2 to M6) indi-
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Figure 10: QoE over stable

bandwidth (“D”=caching &

reusing SR results).

Figure 11: Data us-

age over stable

bandwidth.

Figure 12: QoE vs. Data us-

age over fluctuating

bandwidth (LTE traces).

vidually improves the upsampling speed and possibly other

metric(s). The Jetson setup shows a similar trend. The two

models (PU-GAN and MPU) we studied exhibit similar per-

formance gains as we progressively apply our optimizations,

except that MPU is less sensitive to M5. This is because of

the network structure difference between PU-GAN and MPU.

Note that we do not apply M3 to MPU because our layer-

by-layer profiling (§5.1.1) reveals there is no layer that only

makes a marginal contribution to the overall upsampling ac-

curacy in the MPU model.

Latency Breakdown. Figure 9 shows the latency break-

down of processing an average frame using PU-GAN (Lab

video, wired 100Mbps, 2080Ti desktop) under two set-

tings: 2×2 and 1×4. As shown, SR remains the most time-

consuming component. The breakdown for MPU is similar.

The above results indicate the importance of SR acceleration.

7.4 Diverse Network Conditions

We evaluate the QoE of YuZu under different network condi-

tions, using the four videos and the associated motion traces.

Stable Bandwidth. We first consider two stable bandwidth:

50Mbps and 75Mbps. Under each bandwidth profile, we run

the full-fledged YuZu (“Full”) and six statically configured

YuZu instances: 4×1, 2×2, and 1×4 with and without SR re-

sult reusing. The QoE results are shown in Figure 10. We

make several observations. First, when the bandwidth is low

(50Mbps), 4×1 (without SR) gives the lowest (and even nega-

tive) QoE. This is because the limited bandwidth leads to high

network-incurred stall when fetching high-resolution content;

SR can effectively improve the QoE by using computation to

compensate for the low bandwidth. Second, when the band-

width increases to 75Mbps, 1×4 gives the lowest QoE due to

the distortion and computation-incurred stall due to the high

SR ratio. Instead, when the bandwidth is sufficient, the player

should fetch the content with a higher quality (e.g., 4×1D).

Third, caching and reusing (C&R) the SR results improves the

QoE when either the bandwidth is low (e.g., 4×1 at 50Mbps),

or the SR ratio is high (e.g., 1×4). Under these two scenarios,

C&R reduces the network and compute resource usage, re-

spectively. The saved resources can be used to improve the

content quality for other frames with more heterogeneity.

Figure 11 compares the (normalized) data usage, which

is defined as the total downloaded bytes including the SR
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Figure 13: QoE and data usage

over live LTE networks. Figure 14: YuZu over ViVo.

models and meta data. Compared to 4×1, applying C&R re-

duces the data usage by 40.5%. Also, increasing the SR ratio

reduces the data usage, e.g., 1×4D consumes only 18.3% of

the data compared to 4×1. The full-fledged YuZu with adap-

tation gives the overall best QoE (Figure 10) and low data

usage (Figure 11) by balancing the compute and network re-

source consumption. Compared to 4×1, full YuZu reduces the

data usage by 52.3% (50Mbps) and 41.9% (75Mbps) while

boosting the QoE by 214% (50Mbps) and 78.3% (75Mbps).

Fluctuating Bandwidth. We repeat the above experiment

over fluctuating bandwidth emulated using our collected LTE

traces (§7.1). The results are shown in Figure 12, which con-

siders both the data usage (x-axis) and the QoE (y-axis). 4×1

yields the highest data usage; further applying C&R (4×1D)

not only reduces the data usage by 40.5%, but also increases

the QoE by 61.8% due to reduced stall. The full YuZu fur-

ther improves the QoE by 21.0% and reduces the average

data usage by 8.2%. This is achieved through strategically

fetching lower-quality blocks and using higher SR ratios. In

addition, the full YuZu improves the QoE by 10.4% to 93.7%,

compared to 1×4 and 2×2 with and without C&R.

Live LTE. We conduct live LTE experiments at 9 locations

in a major U.S. city. As shown in Figure 13, the results are

largely aligned with those in Figure 12, except for the lower

QoE of 4×1. This is because of the lower bandwidth of live

LTE throughout the test locations compared to the LTE traces

used in Figure 12. Compared to 4×1, the full YuZu improves

the QoE by 210.3% and reduces the data usage by 50.8%.

7.5 YuZu vs. Existing Approaches

YuZu vs. Viewport-Adaptive Streaming. We compare YuZu

with ViVo [27], a recently proposed viewport-adaptive ap-

proach. Leveraging 6DoF motion prediction, ViVo determines

what content to fetch and which quality to fetch based on
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predicted viewport and viewing distance. Similar viewport-

adaptive approaches are used in the other systems [41, 50].

We develop a custom replication of ViVo on Linux in 7,101

LoC with the same set of configuration parameters. Figure 14

shows the improvement brought by YuZu compared to ViVo

in terms of the overall QoE and its three components (Qi,

I
patch
i , and I

f rame
i , see Eq. 8), using all four videos and the

users’ motion traces.4 Note that both systems exhibit negligi-

ble stall so Istall
i is not plotted. As shown, YuZu brings signifi-

cant improvement on the average QoE (by 100.6% to 174.9%)

and on each QoE component. YuZu outperforms ViVo due to

three reasons. First, ViVo does not support SR, which YuZu

leverages to boost the QoE. Second, ViVo’s viewport adapta-

tion approach becomes less effective when the whole scene

appears inside the viewport (which oftentimes appears in our

motion traces). SR does not suffer from this limitation. Third,

to realize viewport adaptive streaming, ViVo has to perform

6DoF motion prediction, which is error-prone. In contrast,

YuZu does not require motion prediction, and therefore ex-

hibits more stable performance in particular when the motion

is fast. Note that viewport-adaptation and SR are orthogonal

approaches and can be jointly applied.

YuZu vs. Simple SR Adaptation. To demonstrate the ef-

ficacy of our network/compute resource adaptation design

(§5.3), we compare it with a simple adaptation approach that

differs in two aspects. First, unlike YuZu’s two-stage adapta-

tion, it only performs single-stage adaptation before down-

loading each chunk. Second, it employs a deterministic greedy

algorithm that increases the SR ratio of each block within the

finite horizon (in chronological order) until the QoE does not

further improve. In contrast, YuZu employs a probabilistic

greedy approach that is less vulnerable to a local maximum.

We evaluate the simple adaptation algorithm using our LTE

traces (§7.4) and plot its result as “Simple” in Figure 12. Com-

pared to it, the full YuZu increases the average QoE by 11.4%

and reduces the average data usage by 7.9%.

7.6 Micro Benchmarks and Resource Usage

We conduct experiments to show the following. (1) YuZu

can work adaptively with different hardware (we compare

the results on 2080Ti and 1660Ti; we also ported YuZu to

an embedded system, see Figure 7). (2) The main memory

(∼5GB) and GPU memory (∼2GB) usage of YuZu is accept-

able. (3) The (one-time) offline training time is non-trivial but

acceptable, and the sizes of SR models are negligible (<0.2%

of the video size). The details can be found in Appendix D.

8 Related Work

Volumetric Video Streaming. There exist only a few studies

on point-cloud-based volumetric video streaming [25–27, 31,

4ViVo does not have the notion of patch; instead its basic adaptation unit

is a cubic cell. To ensure fair comparisons, we further divide ViVo’s cells into

virtual “patches” with the same size as YuZu and assign to them its parent

cell’s corresponding quality level when calculating I
patch

i
.

41,50,52,59]. For example, DASH-PC [31] extends DASH to

volumetric videos. PCC-DASH [59] is another DASH-based

streaming scheme of compressed point clouds with bitrate

adaptation support. ViVo [27] introduces visibility-aware op-

timizations for volumetric video streaming. GROOT [41] op-

timizes point cloud compression for volumetric videos. To the

best of our knowledge, there is no existing work on applying

3D SR to volumetric video streaming.

Point Cloud SR. We can classify existing work on point

cloud SR into two categories: optimization-based [16, 32]

and learning-based [43, 61, 63, 70]. Most learning-based ap-

proaches follow the workflow established in PU-Net [70],

which divides a point cloud into patches, learns multi-level

point features of each patch, expands the features, and recon-

structs the points from the features. All the above methods are

designed for a single point cloud; they suffer from numerous

limitations when applied to volumetric videos (§2).

Visual Quality Assessment of Point Clouds. The state-

of-the-art visual quality assessment focuses on static, non-SR

point clouds [23, 47, 60]. For example, using a data-driven

approach, Meynet et al. [47] present a full-reference visual

quality metric for colored point clouds. Different from the

above studies, we model the QoE of SR-enhanced volumetric

video streaming. We address new challenges on modeling

the impact of various factors such as the viewing distance,

upsampling ratio, and SR incurred distortion (§4).

SR for Regular 2D Videos. NAS [67, 68] is one of the

first proposals that apply 2D SR to Internet video streaming.

Other recent efforts on 2D SR include PARSEC [22] for

360° panoramic video streaming, LiveNAS [39] for live video

streaming, and NEMO [66] for mobile video streaming. In

contrast, YuZu addresses numerous unique challenges (§1)

on applying 3D SR to volumetric video streaming.

9 Concluding Remarks

In this paper, we conduct an in-depth investigation on apply-

ing 3D SR to streaming volumetric content. Our proposed

QoE model and the YuZu system take a first and important

step toward making SR-enhanced volumetric video streaming

principled, practical, and affordable. YuZu demonstrates how

a series of novel optimizations, which fill a 500× performance

gap, as well as judicious network/compute resource adapta-

tion can help significantly improve the QoE for volumetric

video streaming.
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Appendices

A Evaluation of QoE Gain Brought by SR

We study the QoE model for qi, j (Eq. 2) while keeping I
patch
i ,

I
f rame

i , and Istall
i as zero. This allows us to measure the impact

of SR without interference from other factors.

We use the four videos introduced in §4.2 for the experi-

ment. We apply our optimized PU-GAN algorithm (details
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in §5.1) to perform upsampling, and create (8
2
) = 28 video

clips where each clip contains 2 out of 8 versions in Table 3

side by side (in a random order). This approach is known as

the double stimulus comparison scale (DSCS) method [5]

as recommended by ITU (International Telecommunication

Union). We repeat the above process for four viewing dis-

tances: 1m, 2m, 3m, and 4m, which are determined from a

separate IRB-approved user study whose details are described

in Appendix B. To maintain a fixed viewing distance d, we

display the viewport at d meters in front of and facing the

viewer. We generate 112 video clips at 4K resolution for each

video segment.

Next, we design a survey using Qualtrics [11] and publish

it on Amazon Mechanical Turk (AMT) [2]. In the survey,

we invite each paid AMT subject to view the 112 clips of

a random video segment (out of the 4 videos) in a random

order. After watching each clip, the subject is asked to rate

which side provides a better QoE through 7 choices (“left

looks {much better, better, slightly better, similar to, slightly

worse, worse, much worse} than right”). We have collected

512 subjects’ responses with a total number of 57,344 ratings.

We show the demographics of the participants in Table 2.

Figure 15 shows the average ratings of the 8 versions across

all the users. The four subplots correspond to the four viewing

distances. We make four observations. First, when the viewing

distance is short, SR can effectively boost the QoE. For exam-

ple, at 1m, compared to 1×1, the (user-rated) QoE increases

by 37%, 75%, 150% for 1×2, 1×3, and 1×4, respectively; 2×2

improves the QoE by 178% compared to 2×1. Second, un-

der the same point density, the upsampled version’s QoE is

usually lower than the original content’s QoE, in particular

when the SR ratio is large. This is caused by SR’s distortion.

However, the gap tends to reduce as the SR ratio decreases.

Third, SR’s gain diminishes as the distance increases, because

the rendered object becomes smaller in the view. Note that

the scores for different distances are not directly comparable.

Fourth, the four video segments exhibit similar trends (figure

not shown).

Converting User Ratings to Numerical Scores. For a

given tuple of (user, viewing distance, video segment), we

construct a weighted directed graph for the user based on

his/her ratings, where the nodes are the 8 schemes. Assume

a video clip contains schemes A (on the left) and B (on the

right). If the user thinks that the left (right) is much better,

better, or slightly better than the right (left), we add an edge

from B to A (A to B) with a weight of 3, 2, and 1, respec-

tively. If the user thinks that the left is similar to the right, we

add two edges between A and B, one from A to B and the

other from B to A, with both edges’ weights set to 0. We then

normalize the weights of all the edges to ∥0,1∥ and apply the

PageRank algorithm [20] to each graph to compute the weight

of every node. We then use the weights (multiplied by 10 for

easy interpretation) as the numerical scores of the 8 schemes

for the corresponding (user, viewing distance, video segment)

tuple. Finally, for each of the 8 schemes under a given view-

ing distance, we average the numerical scores across all the

tuples (of that viewing distance) to obtain the results shown

in Figure 15. Note that for each viewing distance, the weights

of all the schemes (in each of the graphs) add up to 1. As a

result, the numerical scores of the same scheme for different

viewing distances are not directly comparable.

B User Study for Collecting

6DoF Motion Traces

We conducted a separate IRB-approved user study for collect-

ing 6DoF motion traces of volumetric videos. Specifically, it

captured the viewport trajectories of 32 users who watched

the four video segments (Lab, Dress, Loot, Haggle) intro-

duced in §2 and §4.2 through either a mixed reality headset

(Magic Leap One [7]) or an Android smartphone. We devel-

oped custom volumetric video players for both device types.

The 6DoF motion data (yaw, pitch, roll, X, Y, Z) was captured

at the granularity of 30 Hz. The participants are diverse in

terms of their education level (from freshman to Ph.D.), gen-

der (16 females), and age (from 22 to 57). We determine the

viewing distances used in §4.2 by analyzing the above traces.

As shown in Figure 16, about 70% of the viewing distances

are less than 4m. Therefore, we set the maximum viewing

distance to be 4m for our user studies, and select the other

three distances by evenly dividing this maximum distance

into four ranges (i.e., at 1, 2, and 3m).

C Colorization Algorithm of YuZu and

its Evaluation

Recall from §5.4 that YuZu takes a lightweight approach to

color the SR results: it approximates each upsampled point’s

color using the color of the nearest point in the low-density

point cloud (i.e., the input to the SR model).

YuZu employs two mechanisms to speed up the nearest

point search. First, the search is performed on an octree [14],

which recursively divides a point cloud (as the root node) into

eight octants, each associated with a child node. The levels

of detail of the point cloud are controlled by the height of the

tree. Performing nearest point search on an octree has a low

complexity of O(logN) where N is the number of nodes in

the tree.

Second, YuZu caches and reuses the results of previously

searched points. The cache is indexed by a point’s discretized

coordinates, and the cached value is the color looked up from

the octree. When coloring an upsampled point, YuZu first

performs cache lookup in O(1); upon a hit, the cached color

will be directly used as the color of the point; otherwise, YuZu

performs a full octree search and adds the search result to the

cache. The discretization granularity incurs a tradeoff between

colorization performance and quality. We empirically observe

that a discretization granularity of 1cm3 can yield good visual
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Figure 15: The average ratings of the 8 versions across all the users watching all the four video segments (Long Dress, Loot, Band, and

Haggle).
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Figure 16: Distribution of viewing distance in our motion traces.

quality under typical viewing distances (≥ 1m).

We also notice opportunities for further improving the col-

orization quality. For example, the nearest point approach can

be generalized into interpolating the nearest k points’ colors;

it can also be used in conjunction with DNN-based coloriza-

tion, which may be more suitable for patches with complex,

heterogeneous colors. Nevertheless, these enhancements in-

evitably increase the runtime overhead. We will explore them

in future work.

Evaluation of Quality of Colorization. To evaluate the

quality of the colorization step alone, we employ the approach

in §7.2 where we use PSNR to objectively assess the image

quality of rendered viewports. Specifically, we calculate the

PSNR values by comparing {INP−Color
4×1 } (defined below) with

{I4×1} (defined in §7.2), using the Dress and Loot videos and

the real users’ motion traces (Appendix B). The viewport

images of {INP−Color
4×1 } are obtained as follows: (1) remove

the color from the original (4×1) video; (2) apply the above

nearest-point (NP) colorization method to the video generated

in Step (1), using the 1×1 video as the low-resolution point

cloud stream from which the colors are picked; (3) replay

the same motion traces to render the viewport images for the

video colored in Step (2). The PSNR values of {INP−Color
4×1 } are

38.09±2.44 and 44.15±2.59 for Dress and Loot, respectively,

indicating the high fidelity of colors produced by our method.

The above numbers are much higher than the PSNR values

in Figure 8 (which also includes the colorization step) due

to the following reason. PSNR and many other 2D image

metrics such as SSIM [62] perform a pixel-wise comparison

between two images. In the case of Figure 8, a tiny position

shift of a 3D point may result in an also tiny position shift of

its projected 2D pixel, leading to a pixel mismatch and thus a

decreased PSNR score. This problem does not appear in the
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Figure 17: Impact of hardware and computation-aware adaptation.

colorization step.

D Additional Micro Benchmarks

The following micro benchmark results are generated using

the PU-GAN model. The results for the MPU model are

qualitatively similar.

Impact of Computation-aware Adaptation. 3D SR de-

mands considerable compute resources. Figure 17 demon-

strates the impact of hardware and computation-aware adap-

tation, using the Lab video. Figure 17 considers two GPUs:

a more powerful 2080Ti GPU and a less powerful 1060Ti

GPU. It also considers two adaptation schemes: the full net-

work/compute adaptation scheme described in §5.3 (“Full”)

and a computation-agnostic scheme that only adapts accord-

ing to the network bandwidth (“Basic”). The Basic scheme

works as follows. (1) It assumes that SR takes no time to com-

plete; (2) it disables 2×2 and 1×4 (otherwise the QoE will

degrade too much due to excessive stalls). Under the above

setup, each bandwidth setting in Figure 17 has four schemes:

{2080Ti, 1660Ti} × {Full, Basic}. As shown, when there is

sufficient bandwidth, the QoE differences among the four

schemes are small, because the player is more likely to fetch

3×1 and 4×1 blocks that do not require SR. However, when

the bandwidth becomes low, the difference between 2080Ti

and 1060Ti becomes noticeable, and the gap between Full

and Basic is even larger. The Basic scheme yields much lower

QoE scores because it ignores SR’s computation overhead,

leading to excessive stalls.

Memory Usage. We measure the client-side memory us-

age when streaming the Lab video over 50Mbps bandwidth

(which leads to extensive invocations of SR). On the 2080Ti
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(1660Ti) desktop, the peak main memory usage is 5.03GB

(5.33 GB); the peak GPU memory usage is 1.97 GB (1.83

GB). YuZu’s GPU memory usage on 2080Ti is higher than

the numbers reported in Figure 6 because YuZu loads multi-

ple SR models at runtime. When the available bandwidth is

higher, the CPU/GPU memory will reduce because of fewer

SR operations.

Offline Training Time and Model Size. YuZu incurs

non-trivial model training time. For example, on the 2080Ti

desktop, it takes about 88 minutes to train the 1×2, 1×3, and

1×4 models altogether for the Lab video consisting of 3,622

frames. However, note that (1) this is a one-time overhead; (2)

we did not conduct any performance optimization for train-

ing; for a large-scale deployment, the training overhead could

potentially be reduced by training one generic model and fine-

tuning it for each specific video [68] (left as future work). The

SR model size is negligible (< 0.2%) compared to the video

size.
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