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ABSTRACT
Volumetric videos allow viewers to exercise 6-DoF (degrees of free-
dom) movement when watching them. Due to their true 3D nature,
streaming volumetric videos is highly bandwidth demanding. In this
work, we present to our knowledge a first volumetric video stream-
ing system that leverages deep super resolution (SR) to boost the
video quality on commodity mobile devices. We propose a series of
judicious optimizations to make SR efficient on mobile devices.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Human-centered
computing → Mobile computing.
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1 INTRODUCTION
Volumetric video is an emerging type of video content that allows
its viewers to have 6-DoF (degrees of freedom) movement during
playback, where viewers can change their positions (X, Y, Z) and
orientations (yaw, pitch, roll) freely when watching a video. Unlike
regular videos or 360-degree videos, volumetric videos consist of
3D points or meshes, making them highly immersive and interactive.

Volumetric videos can be captured using RGB-D cameras with
depth sensors (Figure 1). They can be stored in different ways in-
cluding 3D meshes and point clouds. In this project, we focus on the
most popular Point Cloud (PtCl) based representation where each
video frame is represented as a collection of points. Due to their
true 3D nature, volumetric videos have numerous applications in,
for example, healthcare, education, and military training. However,
streaming them is extremely challenging from the perspective of
bandwidth consumption. For a high-resolution PtCl footage, its data
rate can be as high as 6 Gbps. Even after compression, the required
bandwidth may still be prohibitively high.

In this poster, we present our ongoing work on developing VoluSR,
a novel system for streaming high-quality volumetric content wire-
lessly to commodity mobile devices. The key contributions of VoluSR
consist of the following.
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Figure 1: The volumetric video capturing system in our lab.

• We apply super resolution (SR), a deep-learning-powered tech-
nique that can significantly boost the visual quality. SR leverages
model overfitting to achieve intelligent content compression. In a
typical SR scheme, we train a DNN model to learn how to recon-
struct high-resolution details from low-resolution content. Then
in the online inference stage, low-resolution images or frames of
the same content, which can be efficiently transmitted over the
bandwidth-constrained networks, are fed into the model to derive
the high-resolution content (called upsampling). Although SR has
been applied to regular 2D videos [3], VoluSR is to our knowledge
the first volumetric video streaming system enhanced by SR.

• Applying SR to upsample a video frame involves performing an
inference on a heavy-weight DNN model, making its performance
on mobile devices (and even on PCs with state-of-the-art GPUs)
falling far short of supporting smooth playback at 30 FPS or higher.
To address this critical challenge, VoluSR applies a serious of opti-
mizations, at both the system and the algorithmic levels, to make
SR feasible on commodity mobile devices. They include strategi-
cally simplifying SR models, aggressively caching/reusing inference
results, and judiciously adapting to users’ perception and mobile
devices’ heterogeneous computation capabilities.

• We are integrating the above design into a holistic system, and
plan to evaluate it against real volumetric videos. We are also in the
progress of recruiting voluntary participants to assess our system
through an IRB-approved study.

2 SR FOR 3D POINT CLOUD VIDEOS
Compared to SR for 2D content (images and regular videos), SR for
3D content remains an emerging research topic. We first demonstrate
that 3D SR can effectively improve the volumetric video quality. We
apply PU-GAN [2], a very recently developed 3D SR model on a
PtCl video captured at our lab (Figure 1). The raw footage of the
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Figure 2: Left: a low-resolution frame (input to PU-GAN), Mid-
dle: the high-resolution frame inferred by PU-GAN, Right: the
ground truth high-resolution frame.

video consists of about 3000 frames each consisting of around 100K
points. We use this video to train a vanilla PU-GAN model, and
then use it to upsample 100 low-resolution frames at about 25K
points per frames. In other words, the upsampling ratio is set to 4,
which can achieve a bandwidth saving of ∼75% under the same
quality level, or a video resolution increase of 300% under the same
bandwidth usage. We conduct our experiments on a desktop PC with
an NVIDIA 2080Ti GPU.

We find that the model achieves good accuracy as visualized in
Figure 2. Quantitatively, the average Chamfer Distance (CD) be-
tween the inference result and the ground truth across all frames is
measured to be 0.33×10−3m2, indicating that PU-GAN can generate
upsampled PtCls whose geometric structures are fairly close to those
of the ground truth [2]. However, the downside is the poor runtime
performance. Even on a desktop PC with a state-of-the-art GPU,
the inference speed is less than 2 FPS, not to mention executing the
inference task on mobile devices with weaker computational capa-
bilities. Our pilot results indicate the need for heavy optimizations
that should strike a tradeoff between video quality improvement and
runtime performance.

3 PROPOSED OPTIMIZATIONS
VoluSR employs several critical optimizations to achieve the goal
of supporting SR for 3D PtCl content on mobile devices, as to be
detailed below.

Speeding up Model Inference. We accelerate the inference pro-
cess by judiciously modifying the PU-GAN model. First, we employ
general DNN model simplification methods such as weight pruning
and quantization to reduce the computational footprint for infer-
ence. Second, we profile the performance of different stages of the
PU-GAN model. Table 1 indicates that the feature extraction stage
remains the performance bottleneck. We thus also explore reducing
the model complexity for feature extraction using, for example, a
more efficient spherical kernel for 3D PtCl convolution [1].

Table 1: Profile the running time of the PU-GAN model.

Feature
Extraction

Feature
Expansion

Point Set
Generation

% Time 78.3% 19.3% 2.4%

Caching and Reusing Inference Results. Regular videos often-
times exhibit significant similarities across frames. We find that
volumetric videos make no exception. As a result, there is no need to
run SR for all the points in all frames. We thus propose to cache the
inference results and reuse them aggressively. We spatially segment
each frame into what we call 3D tiles, which are the basic units for
SR inference and caching. If any tile in the current frame has the
same geometric structure to a cached tile, the cached inference can
be directly used. To further facilitate reusing cached results, VoluSR
allows approximating a tile using a geometrically similar cached
tile and a lightweight patch that delta-encodes the difference. Note
that the computationally intensive tasks of tile segmentation, patch
generation, and similarity measurement can all be done offline for
on-demand volumetric videos.

Adapting to User’s Perception. VoluSR also leverages human
users’ perception to reduce the computational workload. Specifi-
cally, it performs 6-DoF prediction of the user’s viewport movement.
Based on that, VoluSR only conducts SR for the tiles that (1) fall into
the predicted viewport, (2) are not blocked by other tiles, (3) bear a
close physical distance to the viewpoint (if a tile is too far, using a
high content resolution does not bring much benefit, in terms of vi-
sual quality improvement), and (4) have sufficiently high brightness
(this can be determined offline if a viewport-independent lighting
model is used). Through such viewport adaptation, a large fraction
of content can be skipped for SR with a small impact on the user’s
quality-of-experience (QoE).

Adapting to Devices’ Computation Capabilities. VoluSR takes
into account the heterogeneity of mobile devices. It assesses a new
device’s computation capability through one-time profiling, and
builds a model that dictates the upsampling time given a tile. At
runtime, leveraging this model and according to the available com-
putation resources, VoluSR dynamically adjusts the upsampling ratio.
When processing the tiles under a tight resource budget, it also ranks
them based on their visual importance (e.g., a closer tile may take a
higher priority than a tile that is far from the viewpoint).

System-level Optimization and Integration. We are working
on developing the above components and integrating them into
a holistic system. System modules consuming different resources
(CPU, GPU, network) will be pipelined to maximize the overall
resource efficiency. In our current design, all key runtime logic
resides on the client side, but we will also consider offloading certain
functions such as viewport adaptation and prediction to the server
(edge). We will thoroughly evaluate our prototype using real PtCl
videos, real users’ viewport traces, and off-the-shelf mobile devices.
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