

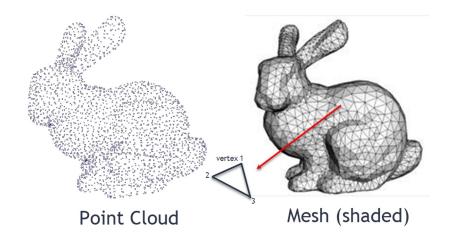
UNIVERSITY OF MINNESOTA Driven to Discover™

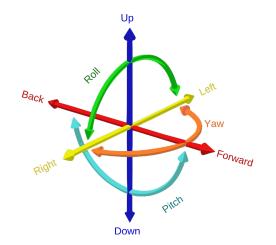
Efficient Volumetric Video Streaming Through Super Resolution

Anlan Zhang¹, Chendong Wang¹, Bo Han², Feng Qian¹

¹ University of Minnesota, Twin Cities ² George Mason University

Video is Evolving

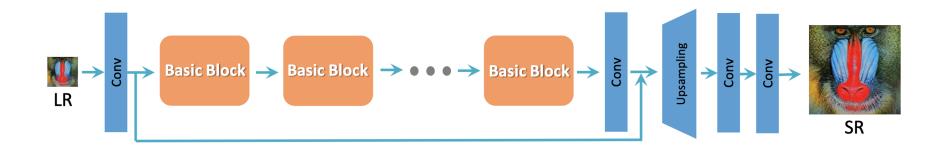




Traditional video 2-dimensional 0-DoF(Degree of Freedom) 360° video 2-dimensional (spherical) 3-DoF

Image source: https://learnex.com.mx/home/principal/more-360-degree-video-content/,https://www.animationkolkata.com/blog/2017/03/06/the-evolution-of-tom-jerry-2d-animation/

Volumetric Video


- 3D animated point cloud or mesh
- 6-DoF
- Immersive telepresence experience

Volumetric Video Streaming

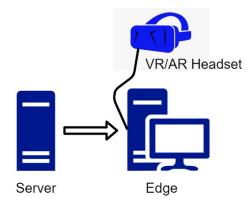
- Challenge:
 - High bandwidth utilization
- Current solutions:
 - DASH-PC^[1]: bitrate adaptation
 - Network condition
 - ViVo^[2]: visibility-aware volumetric video streaming
 - User viewport prediction
- Can we leverage the computation resource to mitigate the bandwidth consumption?

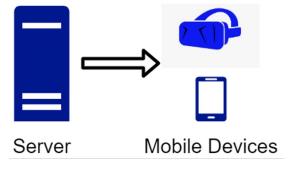
Image Super Resolution

- Enhance the visual quality (resolution) of Images with Conv DNN
- Inference speed: ~30FPS

Image source: "ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks"

Point Cloud Super Resolution


- Enhance the point cloud density with Conv DNN
- Advantages:
 - Reduce the bandwidth by ~ 75% (when SR ratio = 4)
 - Achieve reasonable reconstruction error



Pilot Study

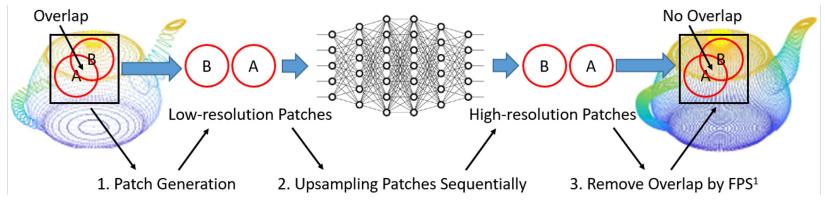
- Experiment Setup:
 - Video: A person giving a talk, 3600+ frames with ~100k points/frame
 - Device: A PC with an NVIDIA 2080 Ti GPU
 - Model: PU-GAN^[1]
 - SR ratio: x4, 25k->100k
- Limitation:
 - Off-the-shelf 3D SR model achieve 0.1 FPS
 - Visual inconsistency
 - Lack of color support

Target Scenario

Edge-assisted VR/AR system

Standalone mobile VR/AR

VoluSR: Efficient Volumetric Video Streaming Through Super Resolution


- Speeding up 3D SR
- Improving Visual Consistency across Frames
- Coloring SR Results
- Adapting to Network and Computation Resource

- Simplifying 3D SR model
 - Profile the inference time of an off-the-shelf 3D SR model (e.g. PU-GAN^[1])
 - Principle: reduce inference time, maintain good accuracy
 - Prune the layers that contribute little to the final result
 - Replace with more efficient operations

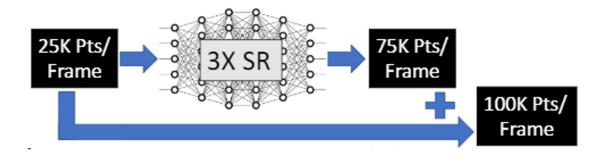
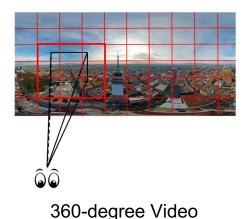
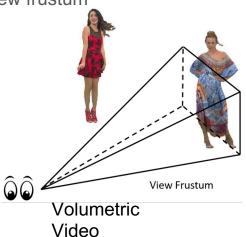

		Feature Extraction	Feature Expansion	Point Set Generation
(% Time	78.3%	19.3%	2.4%

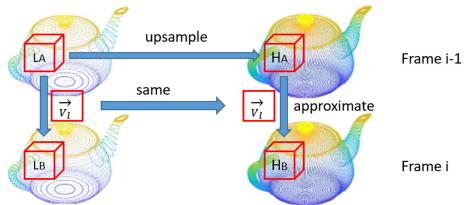
Table: Profile the Inference time of the PU-GAN^[1] model


- Optimizing patch generation
 - Patch generation in an off-the-shelf 3D SR process
 - Overhead comes from overlaps
 - Method: Simplify the patches' geometry shapes to remove overlaps
 - E.g. dividing the space into small cubic grids



- Overlaying SR input on SR output
 - \circ A point cloud is a set of unstructured points \rightarrow easy to merge two point clouds
 - SR's output points are different from the input

- Adapting to user's viewport
 - 360-degree video: longitude/latitude
 - Only streaming cells in/around the predicted viewport
 - Volumetric video: 6-DoF, more challenging
 - Only upsample patches are predicted to fall into view frustum¹



360-degree video image source: <u>https://360labs.net/blog/vr-video-formats-explained</u> Volumetric video model source: <u>http://plenodb.jpeg.org/pc/8ilabs</u> View Frustum¹: In 3D computer graphics, the view frustum is the region of space in the mo

View Frustum¹: In 3D computer graphics, the view frustum is the region of space in the modeled world that may appear on the screen.

Improving Visual Consistency across Frames

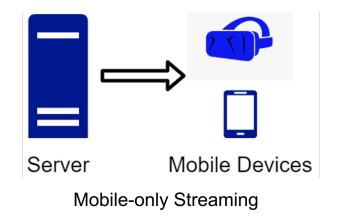
- Consider visual consistency in the loss function of SR model
- Reuse SR results
 - A "motion vector" to approximate the transition
 - Patches in the same position in consecutive frames
 - Smooth
 - Less computation overhead
 - Patches should have similar geometry shapes

Coloring SR Results

- Modify the SR model
 - Inferring the color components
 - Accurate but heavyweight
- Approximate a point's color, e.g. through interpolation
 - Using the low-resolution frame
 - Lightweight but less accurate

Adapting to Network and Computation Resource

- Traditional video streaming
 - Adaptive bitrate (ABR) algorithm
 - Adapt video quality to network condition
- SR-enhance volumetric video streaming
 - Not only network condition, but also computation resource
 - Trade-off
 - How to model user's Quality of Experience (QoE)?
 - To guide our adaptation algorithm
 - Involve more factors compared to 2D videos' QoE
 - Point density
 - Viewing distance
 - SR distortion
 - ...


Evaluation A Part of Our Optimizations

- Scenario: Mobile-only streaming
- Evaluation setup

Results

- A Jetson TX2 embedded system board with a 256-core NVIDIA Pascal GPU
- Upsample a video from 5k to 20k points/frame (SR ratio = 4)
 - The video used in our pilot study
- 3D SR model: PU-GAN^[1]
 - Simplifying the model and patch generation

	Vanilla	Optimized
Memory Usage	4760	1138
Frames per second (FPS)	0.2	10.7
Average Accuracy (cm)	3.50	2.55

[1] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. PU-GAN: A Point Cloud Upsampling Adversarial Network. In ICCV, 2019.

Recap & On-going Work

- *VoluSR*: Efficient Volumetric Video Streaming Through Super Resolution
 - Speeding up 3D SR
 - Improving Visual Consistency across Frames
 - Coloring SR Results
 - Adapting to Network and Computation Resource
- Preliminary results
 - Runtime performance is improved greatly
 - Good SR inference accuracy is achieved
- Currently we are developing the whole system

UNIVERSITY OF MINNESOTA Driven to Discover™

Efficient Volumetric Video Streaming Through Super Resolution

Anlan Zhang¹, Chendong Wang¹, Bo Han², Feng Qian¹

¹ University of Minnesota, Twin Cities ² George Mason University