

VOLUT: EFFICIENT VOLUMETRIC STREAMING ENHANCED BY <u>LUT</u>-BASED SUPER-RESOLUTION

Chendong Wang¹, Anlan Zhang², Yifan Yang³, Lili Qiu³, Yuqing Yang³, Xinyang Jiang³, Feng Qian², Suman Banerjee¹
¹University of Wisconsin-Madison, ²University of Southern California, ³Microsoft Research Asia

MLSys 2025

Volumetric Video

- Immersive: 6-DoF (degree-of-freedom) movement
 - X, Y, Z, yaw, pitch, roll
- Watch through VR/AR/MR headsets or on desktops
- Applications: e.g., telepresence

Volumetric Video

- Representation: point cloud or 3D mesh
- Challenge of streaming volumetric video over the Internet
 - Bandwidth-intensive: hundreds of Mbps or even Gbps
 - Example: 200k points (15 Bytes for a point) per frame at 30 FPS requires 720 Mbps

MLSys 2025

Existing SR-based Solution (YuZu, NSDI'22)

- Improve the QoE of volumetric video streaming through 3D super resolution (SR)
 - Point cloud (PtCl) resolution/quality: point density

Existing SR-based Solution (YuZu, NSDI'22)

- Improve the QoE of volumetric video streaming through 3D super resolution (SR)
 - Point cloud (PtCl) resolution/quality: point density
 - Still heavyweight after extensive optimization
 - Limited upsampling ratios
 - Growing offline training cost

Offline trained 3D SR model

Sizeof(low-res PtCl + SR model) << *Sizeof*(high-res PtCl)

Several Bandwidth Saving! But ...

Our Solution: VoLUT

- Interpolation + Refinement
 - Reduce 3D SR complexity
- Trade on-device memory for efficient model inference
 - NN \rightarrow Lookup Table (LUT)

Challenges

- How to reduce visual distortions and computational complexity
- How to build LUTs for continuous 3D SR
- How to do adaptive streaming for arbitrary SR ratio

Core Technique 1 – Dilated Interpolation

- Add "dilation" to kNN \rightarrow larger receptive field
- Octree-based parallelism + neighbor reuse \rightarrow 4× speed-up

Naive kNN interpolation

kNN interpolation w/ dilation

Core Technique 2 – Continuous space LUT conversion

- Raw k = 3 neighborhood
- Normalized to [0,1]^{d=2}
- Quantization (b×b), b = 4

Core Technique 2 – Continuous space LUT conversion

Core Technique 2 – Continuous space LUT conversion

Кеу	Value		Кеу	Value
(0,0) (0,0) (0,0) (0,0)		Refine NN	(0,0) (0,0) (0,0) (0,0)	offset ₀
(0,0) (0,0) (0,0) (0,1)			(0,0) (0,0) (0,0) (0,1)	$offset_1$
(1,1) (1,1) (1,1) (1,1)			(1,1) (1,1) (1,1) (1,1)	$\mathbf{offset}_{\mathbf{m}}$

 $m=b^{(nd)}$

- LUT size tradeoff:
 - n=4,b=64 → ~100 MB;
 - n=4,b=128 \rightarrow ~1.6 GB

Core Technique 3 – LUT Refinement

Core Technique 4 – Continuous ABR

- Discrete bitrate ladders \rightarrow quality jumps (360p, 1080p, 4k ...)
- Our MPC formulation:

$$\max_{\boldsymbol{\rho}_t} \; \sum_t \left(\alpha \, Q(\boldsymbol{\rho}_t) - \beta \, V\!(\boldsymbol{\rho}_t) - \gamma \, S\!(\boldsymbol{\rho}_t) \, \right) \\$$

• Any down-sampling rate \rightarrow smooth transitions

VoLUT System Architecture

- Server: density-aware downsampling + ABR
- Client:
 - Dilated kNN interpolation
 - LUT-based refinement
 - Rendering

Experimental Setup

- Datasets: 6 volumetric videos (~100 K pts/frame)
- Networks: fixed 50/75/100 Mbps + LTE traces
- Hardware: RTX 3080Ti, Orange Pi (Quest-class)
- Baselines: GradPU, YuZu, ViVo

Super-Resolution Quality

Performance & Resource Usage

Stable Trace

т

LTE Trace

Yuzu-SR

QoE & Bandwidth Savings

• Under real User traces

Conclusion

• Key contributions:

- Enabling 3D Super-resolution at line rate on mobile level devices
- Making possible 3D continuous space to benefit from LUTs
- End-to-end systems that achieves high QoE with low data usage.

THANKS!

VOLUT: EFFICIENT VOLUMETRIC STREAMING ENHANCED BY LUT-BASED SUPER-RESOLUTION

Chendong Wang¹, Anlan Zhang², Yifan Yang³, Lili Qiu³, Yuqing Yang³, Xinyang Jiang³, Feng Qian², Suman Banerjee¹

¹University of Wisconsin-Madison, ²University of Southern California, ³Microsoft Research Asia