EMP: Edge-assisted Multi-vehicle Perception

Xumiao Zhang, Anlan Zhang⁺, Jiachen Sun, Xiao Zhu, Yihua Guo[‡], Feng Qian⁺, Z. Morley Mao

University of Michigan ⁺University of Minnesota – Twin Cities [‡]Uber Technologies, Inc.

Image source: https://www.extremetech.com/computing/305691-the-future-of-sensors-for-self-driving-cars-all-roads-all-conditions https://steemit.com/technology/@rnjena/low-cost-solid-state-2d-lidar

Limitations of On-board Sensors

• They are vulnerable to occlusion.

Limitations of On-board Sensors

- They are vulnerable to occlusion.
- The farther an object is, the fewer details they can capture.

* Ego-vehicle: the vehicle collecting sensor data and perceiving the environment

Limitations of On-board Sensors

- They are vulnerable to occlusion.
- The farther an object is, the fewer details they can capture.

Missed Detections A visualized LiDAR point cloud (blue) **Ego-Vehicle**

Benefits of Sensor Data Sharing

- Different vehicles perceive information from various locations
 - objects occluded in the views of some vehicles can be easily perceived by others.
- Driving scenarios where vehicles can benefit from sensor data sharing:

Limitations of Existing Solutions

- Sharing processed data [1,2]
 - Limited data granularity: missed detections will still be missed after sharing
 - Combining sensor data can lead to a higher resolution
 - Lack of generality
 - Raw data has a fundamental and universal format, compatible with various applications

[1] Liu, Hansi, et al. "FusionEye: Perception Sharing for Connected Vehicles and its Bandwidth-Accuracy Trade-offs." IEEE SECON. 2019.
[2] Chen, Qi, et al. "F-cooper: feature based cooperative perception for autonomous vehicle edge computing system using 3D point clouds." ACM/IEEE SEC. 2019.

Limitations of Existing Solutions

- Vehicle-to-vehicle sharing [1,2,3]
 - Additional <u>network</u> overhead for sharing with different vehicles
 - N vehicles \rightarrow N-1 copies, N*(N-1) bandwidth consumption
 - Additional <u>computational</u> overhead for processing data from others
 - CAV hardware is originally equipped for processing single-vehicle data

[1] Chen, Qi, et al. "Cooper: Cooperative perception for connected autonomous vehicles based on 3d point clouds." IEEE ICDCS, 2019.
[2] Olaverri-Monreal, Cristina, et al. "The See-Through System: A VANET-enabled assistant for overtaking maneuvers." IEEE Intelligent Vehicles Symposium, 2010.
[3] Qiu, Hang, et al. "Avr: Augmented vehicular reality." Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services. 2018.

Need for an Edge-assisted System

- Offloading heavy computational tasks to an **edge**
 - Edge: computing resources close to vehicles, providing low network latency
 - Advantages of using an edge
 - Less network overhead: vehicles only need to share their sensor data to the dge
 - More computational resources: compared to a vehicle's on-board hardware

Raw point cloud: ~2.0MB LiDAR capture rate: 5-20Hz

Challenges

- 1. Bulky size of raw sensor data
- 2. Increased latency to process aggregated data
- 3. Network resource variability
 - Vehicles have different available bandwidths*.
 - Wireless networks fluctuate under high mobility.
- 4. Asynchronous data arrival

* Available bandwidth: the maximum throughput that an end host can achieve during data transfer

EMP (Edge-assisted Multi-vehicle Perception)

Point Cloud Partitioning

- Partitions the whole area into non-overlapping regions
 - *Key idea: assigns each point to the closest vehicle*
 - **Voronoi diagram**: partitioned by the perpendicular bisectors of connections between every two neighboring vehicles.

Point Cloud Partitioning

• Naive partitioning of point cloud through Voronoi diagram

What if A's bandwidth is much lower than B's?

Bandwidth-aware Partitioning

• Partition based on the vehicle locations and the estimated bandwidths

- *Key idea: uploaded area positively correlated to the estimated bandwidths*
- Power diagram (weighted Voronoi diagram)

Weights: $r1 \propto BW_A$, $r2 \propto BW_C$ $R^2 = d1^2 - r1^2 = d2^2 - r2^2$

What if A's bandwidth becomes lower than B's?

Adaptation to Bandwidth Fluctuation

- Partition the data into multiple chunks with two additional boundaries
 - Consider Accurate/Overestimated/Underestimated bandwidth

Adaptation to Bandwidth Fluctuation

- Partition the data into multiple chunks with two additional boundaries
 - Consider Accurate/Overestimated/Underestimated bandwidth
 - Each vehicle sequentially uploads from chunk 1 to chunk 4

(1) Vehicle A's point cloud

(2) Vehicle C's point cloud

- Upload finish conditions
 - $C_1 \& C_2$

- Upload finish conditions
 - $C_1 \& C_2$
 - C_1 + neighbors' C_3

- Upload finish conditions
 - $C_1 \& C_2$
 - C_1 + neighbors' C_3
 - neighbors' C₃ & C₄

- Upload finish conditions
 - $C_1 \& C_2$
 - C_1 + neighbors' C_3
 - neighbors' $C_3 \& C_4$
- Check chunk delivery status upon receiving each chunk

View Merging

- A point cloud is generated from the perspective of the detecting vehicle
 - The origin is the LiDAR sensor mounted atop the vehicle.
 - Point clouds collected by different vehicles have different coordinate systems.
- The edge merges the views of different vehicles

- EMP prototype in Java: <u>https://github.com/Shawnxm/EMP</u>
- Emulation testbed: EMP-edge instance + multiple EMP-vehicle instances

- Network conditions
 - Trace collection
 - Saturate the link with UDP data upload when driving at urban and rural areas
 - Measure the actual network throughput
 - Network types
 - LTE cellular networks (AT&T)
 - 60GHz WiFi networks (802.11ad, also considered in [1])
 - Replay traces over Ethernet with Linux **tc** throttling the bandwidth

[1] Qiu, Hang, et al. "Avr: Augmented vehicular reality." Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services. 2018.

- Sensor (LiDAR)
 - Modify an existing tool* for generating driving data in a video game (GTA V)
 - Collect the *first* <u>multi-vehicle</u> dataset with <u>panoramic</u> LiDAR point clouds

System Scalability

- Compare the end-to-end latency of four schemes
 - EMP outperforms V2V sharing schemes by 49-65% in end-to-end overhead
 - Partitioning and scheduling effectively reduces latency

- Real-world driving test
 - One machine runs the EMP-edge instance
 - Multiple vehicles each carries a laptop running EMP-vehicle instances

System Scalability

- Real-world driving tests
 - The latency does not inflate when increasing the number of vehicles
 - *REAP helps reduce the processing delay*

Perception Enhancement

- Object detection accuracy
 - Single-CAV (CAV) < Multi-CAV (EMP) < Combined (Edge+CAV)
 - REAP introduces negligible performance degradation while saving bandwidth

Road Hazard Avoidance

• Blind Spots (camera images)

Frame 0

Road Hazard Avoidance

- Blind Spots (visualized point clouds): save 0.6s
 - The blocked vehicle can be detected in both 2-vehicle setups

* 0.1*8 - (0.2 processing - 0.063 inference + 0.051 transmission) $\approx 0.6s$

Conclusion Thank you!

- Propose EMP, an edge-assisted multi-vehicle perception framework
- Develop robust algorithms for scalable, adaptive, and resource-efficient sensor data sharing under fluctuating network conditions
 - A point cloud partitioning algorithm with bandwidth adaptation
 - A graph-based upload scheduling algorithm
- Implement the *first* LiDAR-based cooperative perception system
 - Outperforms V2V sharing schemes by 49-65% in end-to-end overhead
 - *Reduce network bandwidth by 36-43% by adaptively uploading sensor data*
 - Demonstrates its benefits of improved perception in realistic driving scenarios

