YuZu: Neural-Enhanced Volumetric Video Streaming

Anlan Zhang¹ Chendong Wang^{1*} Bo Han² Feng Qian¹ ¹University of Minnesota, Twin Cities ²George Mason University

April, 2022

Volumetric Video

Volumetric Video

Point Cloud: un-sorted set of 3D points with attributes, e.g., color Point Cloud Mesh (shaded)

3D Mesh: 3D model consisting of polygons (vertices, edges, and faces)

- Representation
 - Point Cloud
 - 3D Mesh
- Streaming over the Internet: high bandwidth consumption
 - Example: 720Mbps = 200K points * 15 bytes * 30 FPS * 8 / 1000 / 1000

Leveraging 3D SR (Super Resolution)

- Improve QoE (quality-of-experience)
- SR for static point cloud
 - SR model (DNN): low-resolution (LR) \rightarrow high-resolution (HR)
 - Resolution: point density
- SR for VoD (video-on-demand)
 - Offline model training: leveraging overfitting
 - Online streaming: LR content & SR model
 - Bandwidth reduction or QoE improvement

Motivation: A Case Study

- SR model: PU-GAN [1]
 - SR ratio: 4, 25K \rightarrow 100K points
- Test video: Lab, 2 min
 - ~100K points per frame
- NVIDIA 2080Ti GPU

Positive Findings 🙂

- Good upsampling accuracy
- Significant bandwidth saving, ~74%
- Challenges 😌
- No generic QoE model
- Poor runtime performance
 - < 0.1 FPS, 7GB memory
- No color support

Our Approach: YuZu

- An empirical QoE model
 - Large-scale (1,446 participants) user studies
- YuZu system design & implementation
 - Intra-frame SR
 - Inter-frame SR
 - Network/Compute resource adaptation
- YuZu evaluation
 - QoE improvement
 - Runtime performance

YuZu Overview

245

QoE Model & User Studies

- An empirical QoE model
 - Point density, viewing distance, SR ratio, visibility, quality switch, stall, etc.
- User studies
 - 4 volumetric videos of human portraits
 - Our optimized PU-GAN [1] model
 - 1,446 participants from 40 countries
 - 10-fold cross validation & cross-video validation
- Takeaways
 - Median QoE prediction error: 12.49%
 - Generic for volumetric videos of the same genre (human portraits)

System Design of YuZu

- Intra-frame SR
 - Speed up SR upsampling within a frame
- Inter-frame SR
 - Cache and reuse SR results across frames
- Network/Compute resource adaptation

Intra-frame SR

- Speed up SR a single frame
- Optimize patch generation
 - 3D SR: per-patch basis
 - Trim pre- and post-processing
- Optimize model structure
 - Pruning through layer-by-layer profiling
 - More efficient feature extraction
- Data reduction
 - Merge SR input with SR output
 - Maintain the same SR ratio with less computation overhead

Inter-frame SR

- Speed up SR across consecutive frames
 - Similarity across consecutive frames
- Cache & reuse SR results
 - Per-patch basis
 - Similarity between patches
 - Only patches at same location
 - Dynamic programming
 - Minimize # of patches to be upsampled
- Offline
 - Pre-compute caching & reusing decisions for VoD content

Network/Compute Resource Adaptation

- Trade-off
 - Download HR content: high network resource usage
 - Download LR content and Upsample it: high compute resource usage
- QoE-driven, two-stage adaptation
 - Before download each chunk
 - Coarse-grained Search
 - Search quality/SR-ratio assignment of to-be-downloaded chunk
 - Before upsample each frame
 - Fine-grained Search
 - Fine-tune SR ratios

Evaluation

- Implementation
 - 10,848 LoC (lines of code) in C/C++
- SR performance breakdown
 - Effectiveness of each optimization for 3D SR
- QoE improvement of YuZu
- End-to-end performance of YuZu
- YuZu vs. viewport-adaptive streaming

SR Performance Breakdown

- O1 (Baseline): vanilla PU-GAN [1] model
 - 2080Ti desktop, SR ratio: 4
- Cumulative optimizations
 - O2: O1 + optimize patch generation
 - O3: O2 + optimize model structure
 - O4: O3 + merge SR input with SR output
 - O5: O4 + cache & reuse SR results
- Takeaways
 - Significantly speed up upsampling (up to 307x)
 - Huge GPU memory usage reduction (up to 87%)
 - No accuracy degradation

YuZu's QoE Improvement

- 4 volumetric videos
 - Downsample to 25% # of points
- Optimized PU-GAN [1] model (YuZu)
 - 4 SR ratios: x1 (no SR), x2, x3, x4
- Subjective ratings
 - 512 participants
- Takeaways
 - YuZu boost QoE by up to 150%
 - Positive correlation between QoE improvement and SR ratio

YuZu's End-to-end Performance

- Fluctuating bandwidth
 12 LTE Traces
- Baseline
 - 100% points, x1 SR
- Only C&R
 - 100% points, x1 SR
 - Cache & resue SR results
- Full-fledged YuZu
- Takeaways
 - Significant QoE improvement (83%/62%) and data usage reduction (49%/40%) for YuZu/Only C&R

YuZu vs. Viewport-Adaptive Streaming

- ViVo [1]
 - 6-DoF motion prediction
 - Content in viewport
- Wired network with stable bandwidth
 - 50, 75, 100 Mbps
- 4 videos with 32 users' motion traces
- YuZu outperforms ViVo by 101% to 175% on QoE

[1] Han, Bo, et al. "ViVo: Visibility-aware mobile volumetric video streaming." Proceedings of the 26th Annual International Conference on Mobile Computing and Networking. 2020.

Demo

• Left: 25% points x4 SR, right: 25% points x1 SR

Conclusion

- An empirical QoE model
 - Large-scale (1,446 participants) user studies
- YuZu system design & implementation
 - Intra-frame SR
 - Inter-frame SR
 - Network/Compute resource adaptation
- YuZu evaluation
 - QoE improvement
 - Runtime performance

YuZu: Neural-Enhanced Volumetric Video Streaming

Anlan Zhang¹ Chendong Wang^{1*} Bo Han² Feng Qian¹ ¹University of Minnesota, Twin Cities ²George Mason University

April, 2022

