

Habitus: Boosting Mobile Immersive Content Delivery through Full-body Pose Tracking and Multipath Networking

 Anlan Zhang^{1*} Chendong Wang⁴ Yuming Hu² Ahmad Hassan^{1*} Zejun Zhang^{1*} Bo Han³ Feng Qian^{1*} Shichang Xu⁵
 ¹University of Southern California ²University of Minnesota, Twin Cities
 ³George Mason University ⁴University of Wisconsin-Madison ⁵Google

Google

Immersive Content is Everywhere

- 3-DoF (degree-of-freedom) to 6-DoF motion
 - x, y, z, yall, pitch, roll
- Bandwidth-intensive
 - Hard to deliver through common wireless links (e.g., 802.11ac)

Volumetric Content [3]

Media sources:

[1] <u>https://giphy.com/gifs/virtual-tour-jkpg360-virtuell-rundtur-r2ddbd3VMZLpfrKkz7</u>

[2] <u>https://80.lv/articles/making-vfx-for-vr-first-person-shooter/</u>

[3] https://www.youtube.com/watch?v=aO3TAke7_MI

1 <u>https://www.androidauthority.com/sub-6ghz-vs-mmwave-5g-3051246/</u>

Case Study: Volumetric Video Streaming over mmWave

- 802.11ad (60 GHz) vs. 802.11ac (5 GHz)
- Test app: [ViVo, MobiCom'20]

USC

- Impact on QoE (quality-of-experience)
 - Video quality +113%, stall +502%

Human body blocks mmWave signal

Existing Systems Using mmWave

Improving the PHY layer, e.g., SpaceBeam [MobiSys'21]

Enhancing line-of-sight (LoS), e.g, VIVE Wireless Adapter [2]

Using specialized device, e.g., MoVR [NSDI'17]

[1] Woodford, Timothy, et al. "Spacebeam: Lidar-driven one-shot mmwave beam management." ACM MobiSys. 2021.
 [2] https://www.pcgamesn.com/vive-wireless-adapter-is-how-much
 [3] Abari, Omid, et al. "Enabling {high-guality} untethered virtual reality." NSDI. 2017.

Existing Systems Using mmWave

e.g., SpaceBeam [MobiSys'21]

Enhancing line-of-sight (LoS), e.g, VIVE Wireless Adapter [2]

Using specialized device, e.g., MoVR [NSDI'17]

We need a robust and easy-to-deploy solution!

[1] Woodford, Timothy, et al. "Spacebeam: Lidar-driven one-shot mmwave beam management." ACM MobiSys. 2021.
[2] https://www.pcgamesn.com/vive-wireless-adapter-is-how-much
[3] Abari, Omid, et al. "Enabling {high-quality} untethered virtual reality." NSDI. 2017.

Our Solution: Habitus

- Multipath networking over heterogeneous links
 - Omnidirectional (e.g. 802.11ac) + mmWave (e.g., 802.11ad) radios

- Actively predicting the fluctuating mmWave throughput
 - Under constant motion of the viewer

Omnidirectional

mmWave

radio 🗸

Challenges

- Predicting mmWave throughput w/ ML models
 - How to improve the accuracy under constant motion
- Applying offline pre-trained ML-based prediction models at runtime
 - How to react to unseen changes deviating from training data
- Heterogeneous (omnidirectional + mmWave) links
 - How to do multipath scheduling

Basic ML-based mmWave Throughput Prediction

History network measurements → future network condition (e.g., throughput)

Motion-enhanced mmWave Throughput Prediction

- Insight 1: mmWave throughput is correlated w/ 6-DoF motions
 - Also validated by previous work: Lumos5G [IMC'20], Aggarwal et al. [PAM'21]

Human body blocks mmWave signal

[1] Narayanan, Arvind, et al. "Lumos5G: Mapping and predicting commercial mmWave 5G throughput." IMC. 2020.

[2] Aggarwal, Shivang, et al. "Throughput prediction on 60 GHz mobile devices for high-bandwidth, latency-sensitive applications." PAM, 2021.

- Insight 2: Spatial correlation among body parts during human motion [1, 2]
 - Example: hand holding controller moves \rightarrow head movement \rightarrow throughput changes
 - Example: leg moves (e.g., viewer turns left) → head rotation → throughput changes
- Tracking full-body pose can improve mmWave throughput prediction
 - Body pose: a set of 3D key points

[1] Bak, Sławomir, et al. "Person re-identification using spatial covariance regions of human body parts." 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance. IEEE, 2010.

[2] Xu, Xinyu, and Baoxin Li. "Exploiting motion correlations in 3-D articulated human motion tracking." IEEE transactions on image processing 18.6 (2009): 1292-1303.

- Data collection at 4 locations w/ 802.11ac/ad APs + a stereo camera (for tracking pose)
 - 3 viewers (1.6m, 1.7m, 1.8m / 1 Female, 2 Males) exercise 10 motion patterns
 - Collect: 1 802.11ac/ad throughput & signal strength, 2 6DoF head motion, 3 full-body pose
 - More details are in the paper

Personal Office

Living Room

	Patterns	Description	
	S 1	The user stands in the center of the room, turning	
		around in a clockwise direction.	
	S2	The user stands in the center of the room, turning	
		around in a counterclockwise direction.	
	S 3	The user walks around in a clockwise direction.	
	S 4	The user walks around in a counterclockwise	
		direction in a normal speed.	
	S 5	The same as S4, but in a slow speed.	
	S 6	The same as S4, but in a fast speed.	
	S 7	A chair occupies the front place of the access point.	
		The user walks around in a counterclockwise direction.	
	S 8	The same as S3, but the user does not change the	
		orientation of his/her head.	
	S 9	The same as S4, but the user does not change the	
		orientation of his/her head.	
	S10	The user walks around following the walking trace	
		in S7, but there is no chair.	
Table 1: User motion patterns.			

University Office

Meeting Room

- Prediction target: mmWave throughput in the next 1 second
 - MAE (mean absolute error) of model w/o and w/ pose
 - Seq2Seq model
 - Other models: GBDT (gradient boosting decision tree), MLP, RNN in our paper
 - w/ Pose: 5% 29% MAE reduction

Seq2Seq model w/ Encoder-Decoder Architecture

- Prediction target: mmWave throughput in the next 1 second
 - MAE (mean absolute error) of model w/o and w/ pose
 - Seq2Seq model
 - Other models: GBDT (gradient boosting decision tree), MLP, RNN in our paper
 - w/ Pose: 5% 29% MAE reduction

- Use a pre-trained model at runtime: performance drop
 - Reason: cannot adapt to changes deviating from training data, e.g.,
 - C1: location change
 - C2: user change
 - C3: motion pattern change
 - C4: static environmental change (e.g., a chair being moved)
 - C5: dynamic environmental change (e.g., a walk-by spectator)
 - Intuition: There is fundamental knowledge learned by models
 - Physical property of mmWave
 - Throughput distribution in certain positions
 - Intuition: The pre-trained model has different sensitivities to these changes
 - The changes that reshape the fundamental knowledge have larger impact

- Systematically quantify model sensitivity to the changes
 - Apply pre-trained models to
 - New location/user/motion pattern
 - Manually created static/dynamic environmental changes

Static environmental change

Dynamic environmental change

- Systematically quantify model sensitivity to the changes
 - C1: location change
 - C2: user change
 - C3: motion pattern change
 - C4: static environmental change
 - C5: dynamic environmental change
- Impact of the changes on MAE

Systematically quantify model sensitivity to the changes

Large impact

- C1: location change
- C2: user change
- C3: motion pattern change
- C4: static environmental change
- C5: dynamic environmental change
- Impact of the changes on MAE

Handle Unseen Changes

• Our solution: Transfer Learning (TL)

USC

- Key assumption: there is invariant learned knowledge before & after a change
- Benefit: adapt model to the change much faster than training a new model from scratch

Handle Unseen Changes

- Our solution: Transfer Learning (TL) •
 - C1: location change Offline TL for ٠ bootstrapping
 - C2: user change ۲
 - C3: motion pattern change ٠
 - C4: static environmental change ۲
 - C5: dynamic environmental change ۲
- More details are in the paper ٠

Vision-based **NLoS** detection

Multipath Scheduling

- Multipath: omnidirectional radio + mmWave
 - Prioritize omnidirectional radio
 - Opportunistically use mmWave
- Trend-aware scheduling
 - Conservatively or aggressively using mmWave
- See paper for details

Holistic View of Habitus

- mmWave throughput prediction
 - Enhanced by tracking full-body pose
 - React to unseen changes
 - Online/Offline transfer learning
 - NLoS detection
- Multipath networking
 - Omnidirectional radio + mmWave
 - Trend-aware scheduling

The system architecture of Habitus

Habitus Prototype

- Habitus is a general framework for immersive apps •
- Implementation w/ commodity HW/SW •
 - Challenges, e.g., accurate throughput estimation

Integrate Habitus to ViVo [MobiCom'20]: only changing 47 LoC

Hardware: ROG Phone II, KCXGHYI VR Headset, Netgear Nighthawk X10 AP, ZED 2i Camera Software: Linux iw, libpcap, Google ARCore, PyTorch & Torchscript, Zed OpenPose

360° Videos

VR Games

Volumetric Content

- Left: trace-driven emulation
- Right: user trial (N=12)

- Left: trace-driven emulation
- Right: user trial (N=12)
- ad: only use 802.11ad (mmWave) w/o prediction

- Left: trace-driven emulation
- Right: user trial (N=12)
- ad: only use 802.11ad (mmWave) w/o prediction
- **Simple**: ac + ad w/o prediction

- Left: trace-driven emulation
- Right: user trial (N=12)
- ad: only use 802.11ad (mmWave) w/o prediction
- **Simple**: ac + ad w/o prediction
- Pro: Habitus ac + ad w/ prediction (6DoF features only)

- Left: trace-driven emulation
- Right: user trial (N=12)
- ad: only use 802.11ad (mmWave) w/o prediction
- **Simple**: ac + ad w/o prediction
- Pro: Habitus ac + ad w/ prediction (6DoF features only)
- Full: Habitus ac + ad w/ prediction (6DoF + full-body Pose features)

- Habitus (Pro, Full) considerably outperforms baseline approaches
- Using full-body pose (Full) further boosts the QoE
- Find more evaluation in our paper

Summary

- Challenge of high-quality immersive content delivery over mmWave
- The design of Habitus
 - Multipath scheduling over omnidirectional radio and mmWave
 - Full-body pose guided mmWave throughput prediction
 - Handle unseen changes
- QoE improvement of Habitus demonstrated by trace-driven emulation & user trial
 - We release our dataset and the source code for data collection
 - (1) 802.11ac/ad throughput & signal strength, (2) 6DoF head motion, (3) full-body pose
 - See our paper for the links