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Abstract

Optimizing Emerging Multimedia Systems:

A Principled Approach to Enhancing Quality-of-Experience

by

Anlan Zhang

Chair: Feng Qian

Recent years have witnessed a surge in innovative networked multimedia applications, which

rely on streaming multimedia content among various entities (e.g., between servers/edge nodes

and clients, among end users, etc.). Despite their potentials, these applications still face challenges

in providing a consistently high quality-of-experience (QoE): the evolution of existing network

infrastructures worldwide lags behind the fast growth of multimedia traffic over the Internet,

while each application exhibits unique characteristics in terms of data representation, resource

requirements, and QoE assessment. My dissertation is dedicated to addressing the above chal-

lenges, with the goal of boosting the QoE of emerging networked multimedia applications on

existing network infrastructures through principled system design: developing adaptive, robust,

and resource-efficient multimedia systems through innovative codecs, cross-layer optimizations,

and user-centered QoEmetrics, backed by solid prototyping and real-world evaluation. In my dis-

sertation, I demonstrate how the principle can be applied and its effectiveness through in-depth
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studies of four representative applications: volumetric video streaming, generalmobile immersive

content delivery, image live co-editing, and low-bitrate video conferencing. Specifically, I propose

four novel systems and frameworks: YuZu, the first volumetric video streaming system enhanced

by 3D super resolution;Habitus, the first software framework aimed at optimizing the upper-layer

network protocol stack for immersive content delivery and, more broadly, metaverse applications;

Alice, a cross-platform compression adaptation framework for low-latency image live co-editing

under fluctuating network and computational resources; and NIER, a practical neural-enhanced

low-bitrate video conferencing solution suitable for a wide range of usage scenarios, particularly

over challenging or metered networks. Through careful design, solid prototyping, and extensive

evaluation, I show that all proposed systems and frameworks significantly improve the QoE of

their corresponding networked multimedia applications compared to the baseline and state-of-

the-art systems. I believe that my studies on the above applications, especially the principled

approach, provide insights for a broader range of novel networked multimedia applications and

can be easily adapted and applied to their system design and optimization.
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Chapter 1

Introduction

Recent years have witnessed a surge in innovative multimedia content and networked multi-

media applications. For instance, volumetric video [257, 255, 254, 256], a novel type of immer-

sive content, has found applications across diverse domains, including healthcare, education, and

entertainment. Similarly, remote collaborative multimedia applications, such as image live co-

editing [159] and video conferencing [268, 267], have garnered increasing attention since the

onset of the COVID-19 pandemic. At their core, these applications rely on streaming multimedia

content among various entities (e.g., between servers/edge nodes and clients, among end users,

and etc.). Despite their potentials, it remains challenging for these emerging networked multime-

dia applications to provide a consistently high quality-of-experience (QoE) when streaming their

multimedia data over existing network infrastructures, due to two major reasons:

From the perspective of network infrastructures, their evolution – namely technical ad-

vancements and commercial deployment – lags behind the fast growth of multimedia traffic over

the Internet. First, while new networking technologies such as 5G are being rapidly rolled out

worldwide, there is limited research on how these technologies can be effectively leveraged to
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support innovative networked multimedia applications, such as immersive content delivery. Sec-

ond, network conditions (e.g., bandwidth and packet loss rate) are fluctuating and difficult to

predict or even estimate accurately in the wild. This presents a critical and common challenge

across various networked multimedia applications, i.e., how to adapt to dynamic network con-

ditions. Furthermore, the current deployment of network infrastructure remains geographically

imbalanced. While developed regions such as North America and Europe benefit from stable and

high-speed Internet access, many areas still suffer from poor broadband connectivity, character-

ized by low bandwidth and high packet loss. In such regions, everyday applications like video

conferencing often deliver suboptimal QoE or may fail to function altogether.

From the perspective of networked multimedia applications, each exhibits distinc-

tive characteristics in terms of data representation, resource requirements, and QoE assessment.

Specifically, immersive content delivery systems demand substantial network resources (e.g.,

hundreds of Mbps or even Gbps for high-quality volumetric videos); image live co-editing sys-

tems require low-latency and lossless image edit transmission among multiple users; and video

conferencing applications must remain resilient under challenging network conditions (e.g., low

bandwidth and high packet loss rate). These inherent differences introduce unique challenges

that necessitate in-depth investigation and tailored design solutions for each application.

My thesis is dedicated to address the above challenges, with the goal of boosting the quality-of-

experience (QoE) of emerging networkedmultimedia applications on existing network infrastructures

through principled system design: developing adaptive, robust, and resource-efficient multimedia

systems through innovative codecs, cross-layer optimizations, and user-centered QoE metrics,

backed by solid prototyping and real-world evaluation. To explain, the principle to enhancing

QoE includes: (1) exploring innovative coding schemes for multimedia content (§3, §5, §6); (2)
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Figure 1.1: Overview of this dissertation.

enhancing adaptability and robustness for streaming multimedia data under fluctuating network

conditions (§3, §4, §5, §6); (3) conducting user studies to understand real users’ QoE expectations

for various applications (§3, §4, §5, §6); (4) leveraging cross-layer design (§4, §6) and (5) seeking

co-existence with commodity network infrastructures and minimizing deployment effort (§3, §4,

§5, §6). Specifically, I demonstrate how the principle can be applied and its effectiveness through

in-depth studies of four emerging and representative networked multimedia applications: volu-

metric video streaming, general mobile immersive content delivery, image live co-editing, and low-

bitrate video conferencing. I believe that my studies with the above applications, especially the

principled approach, provide insights for a broader range of novel networked multimedia ap-

plications and can be easily adapted and applied to their system design and optimization. The

overview of my dissertation is illustrated in Figure 1.1, and I elaborate on its contributions in the

following four sections.
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1.1 Neural-enhanced Volumetric Video Streaming

Differing from traditional 2D videos, volumetric videos provide true 3D immersive viewing ex-

periences and allow viewers to exercise six degree-of-freedom (6DoF) motion. However, stream-

ing high-quality volumetric videos over the Internet is extremely bandwidth-consuming. To im-

prove the quality-of-experience (QoE) under limited bandwidth, priorwork hasmostly focused on

viewport-adaptive streaming (i.e.,mainly streaming content that will appear in the viewport) [68,

102, 156]. However, they are ineffective when the entire scene falls inside the viewport. They also

require 6DoF motion prediction that is unlikely to be accurate for fast motion. Some other pro-

posals explored remote rendering [64, 165] (e.g., having an edge node transcode 3D scenes into

regular 2D frames). However, they require not only 6DoF motion prediction, but also edge/cloud-

side transcoding that is difficult to scale.

In this work, we propose to leverage 3D super resolution (SR) to drastically increase the visual

quality of volumetric video streaming. To accomplish this goal, we conduct deep intra- and inter-

frame optimizations for off-the-shelf 3D SR models, and achieve up to 542× speedup on SR infer-

ence without accuracy degradation. We also derive a first Quality of Experience (QoE) model for

SR-enhanced volumetric video streaming, and validate it through extensive user studies involving

1,446 subjects, achieving a median QoE estimation error of 12.49%. We then integrate the above

components, together with important features such as QoE-driven network/compute resource

adaptation, into a holistic system called YuZu that performs line-rate (at 30+ FPS) adaptive SR for

volumetric video streaming. Our evaluations show that YuZu can boost the QoE of volumetric

video streaming by 37% to 178% compared to no SR, and outperform existing viewport-adaptive

solutions by 101% to 175% on QoE.
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To summarize, we make the following contributions: (1) We build an empirical QoE model for

SR-enhanced volumetric videos, and validate it through large-scale user studies involving 1,446

participants. We build our models using volumetric content of single/multiple human portraits,

a major application of volumetric video streaming. Note that the model can be applied to non-SR

volumetric videos belonging to the same genre, with an SR ratio of 1; (2) We propose and design

YuZu, an SR-enhanced, QoE-aware volumetric video streaming system; and (3) We implement

YuZu, and conduct extensive evaluations for its QoE improvement and runtime performance.

1.2 Boosting Mobile Immersive Content Delivery through

Full-body Pose Tracking and Multipath Networking

Delivering high-quality immersive content such as volumetric videos and virtual/mixed reality

requires tremendous network bandwidth. MillimeterWave (mmWave) radios such as 802.11ad/ay

and mmWave 5G can provide multi-Gbps peak bandwidth, making them good candidates. How-

ever, mmWave is vulnerable to blockage/mobility and its signal attenuates very fast, posing a

major challenge to mobile immersive content delivery systems where viewers are in constant

motion and the human body may easily block the line-of-sight. To overcome this issue, existing

systems take three categories of approaches: (1) Improving the PHY layer [54, 233, 226]; (2) En-

hancing line-of-sight (LoS) [221]; and (3) Using specialized equipment [2]. However, they all have

limitations. Engineering the PHY layer alone is inadequate to handle, e.g., the throughput fluc-

tuation incurred by viewers’ fast motion. Mounting the radio overhead may still incur frequent

non-line-of-sight (NLoS) blockages (e.g., when the viewer looks up/down, raises arms, or passes
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through an obstacle). Adding reflectors to combat NLoS raises the deployment bar and is incom-

patible with commodity mmWave protocols. Even in the absence of blockage, highly dynamic

user mobility can still cause significant performance drops of mmWave [201, 183, 5].

In this work, we investigate two under-explored dimensions. First, we use the combination of

a viewer’s full-body pose and the network information to predict mmWave performance as the

viewer exercises six-degree-of-freedom (6-DoF) motion. We apply both offline and online transfer

learning to enable the prediction models to react to unseen changes. Second, we jointly use

the omnidirectional radio and mmWave radio available on commodity mobile devices to deliver

immersive data. We integrate the above two features into a user-space software framework called

Habitus, and demonstrate how it can be easily integrated into existing immersive content delivery

systems to boost their network performance, which leads to up to 72% of quality-of-experience

(QoE) improvement.

Habitus represents to our knowledge a first software framework aiming at optimizing the

upper-layer network protocol stack for immersive content delivery (and metaverse applications

in general). This work makes three-fold contributions: the design of the Habitus framework; its

implementation, evaluation, and integration into two volumetric content delivery systems; and

the release of data [67] (802.11ac/ad performance correlated with full-body motion) and source

code [66].

1.3 Low-latency Image Live Co-editing via Adaptation

Image live co-editing (LCE), which allows users to edit a shared image concurrently and remotely,

is rising in popularity. However, fluctuating resources (i.e., bandwidth and computation), as well
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as varying degrees of edit complexity, make it challenging to achieve low-latency image live

co-editing, which drastically degrades the user experience. Many networked multimedia appli-

cations, such as real-time communication and video streaming, face similar challenges as those

mentioned above. Existing approaches to reducing end-to-end multimedia transmission latency

can be categorized into three main strategies: (1) Reducing in-network queuing delay [133, 223,

204]; (2) Adaptive streaming [197, 166, 68]; and (3) Accelerating compression [191]. However, they

all have limitations in the context of image live co-editing. Reducing in-network queuing delay

can be helpful, but overall latency may still be constrained by network limitations due to the

low compression ratio of lossless compression. Adaptive streaming relies on lossy compression,

which is incompatible with image LCE’s requirement for lossless compression, limiting its ap-

plicability. Accelerating compression through extensive parallelization demands high on-device

computational power, which may not always be available. Additionally, network constraints

may still impose latency limits due to the restricted compression ratio of lossless methods.

In this work, to achieve low-latency image LCE, we propose Alice, a cross-platform com-

pression adaptation framework that incorporates three core designs. First, Alice leverages both

data-based (i.e., sending compressed pixels) and operation-based (i.e., sending image editing oper-

ation APIs and corresponding parameters) approaches for image edit transmission. Second, Alice

combines diverse modern lossless compression techniques and their various configurations to

enhance the adaptability of data-based transmission. Third, Alice features a lookup table (LUT)-

based decision framework to determine the best transmission strategy for image edits in real

time. We implement Alice and integrate it into our image LCE testbed. Our extensive evaluation

shows that, compared to the baselines using a fixed transmission strategy, Alice achieves up to

95% latency reduction with negligible overhead.
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To summarize, our contributions include: (1) To the best of our knowledge, this is the first

study to focus on low-latency image live co-editing, addressing the problem from a system per-

spective; (2) The design of Alice, including its hybrid transmission strategy and the LUT-based

adaptation algorithm; and (3) The implementation, integration, and thorough evaluation of Alice

on our self-developed testbed.

1.4 Practical Neural-enhanced Low-bitrate Video Confere-

ncing

Low-bitrate video conferencing benefits multiple stakeholders: streaming platforms spend less on

network infrastructures; cellular providers see reduced peak-hour traffic; mobile customers pay

less over metered links; and most importantly, end users perceive better quality-of-experience

(QoE) under challenging network conditions. The existing solution for achieving low-bitrate

video conferencing with decent QoE is to stream low-resolution video frames using traditional

codecs [172, 203, 20], and then apply image enhancement techniques like super-resolution [195] at

the receiver to boost visual quality. One issue of this approach is that, for efficiency, all traditional

codecs incur high temporal dependency; i.e., they produce P-frames whose decoding depends on

prior I- or P-frames. As a result, a single packet loss can lead to the undecodability of multiple

consecutive frames. Note that packet losses are prevalent in challenging network conditions –

a key usage scenario of low-bitrate video streaming. There are a few techniques to counteract

packet losses for real-time video communication, such as retransmissions, forward error correc-

tion (FEC) [141, 180], error concealment [228], and advanced loss-resilient neural codecs [36,
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107]. However, they suffer from various limitations such as prolonged latency, extra bandwidth

cost, low compression efficiency, and prohibitively high compute overhead, respectively.

In this work, we develop NIER, a practical low-bitrate video conferencing solution. It can

adaptively maintain a low bitrate (e.g., 10–100 Kbps) with reasonable visual quality while be-

ing robust to packet losses. Satisfying these design requirements makes NIER suitable for a wide

range of usage scenarios, in particular over challenging/metered networks. Under the hood,NIER

leverages key-point-based deep image animation (DIA) as a key building block, where the sender

transmits sparse key-points alongside a reference image, and the receiver reconstructs the orig-

inal video frames by animating the reference image using the key-points’ motion. To make DIA

practical, NIER addresses a series of challenges in networking and system dimensions, including

robustly updating reference frames, adapting to fluctuating bandwidth, handling varying packet

loss rates, and achieving line-rate frame processing on commodity client devices. Our exten-

sive evaluations (including an IRB-approved user study involving 20 participants) demonstrate

that NIER considerably outperforms several baseline solutions (traditional video codecs, super-

resolution-enhanced video conferencing, forward error coding (FEC), loss-resilient neural codec,

and naive application of key-point-based DIA) in terms of end-to-end latency, decodable frame

ratio, frame rate, video quality, and/or users’ quality-of-experience (QoE).

NIER is to our knowledge the first practical low-bitrate video conferencing solution enhanced

by key-point-based DIA. Our contributions include: (1) the design of NIER; (2) the implementa-

tion and end-to-end evaluation of NIER; and (3) the extensive comparison between NIER and the

state-of-the-art low-bitrate and loss-resilient video conferencing solutions.
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1.5 Thesis Organization

This dissertation is structured as follows. Chapter 2 provides sufficient background of the four

networked multimedia applications mentioned above. In Chapter 3, we study on-demand volu-

metric video streaming, and proposeYuZu, a first-of-its-kind system that applies 3D super resolu-

tion to enhance the quality-of-experience (QoE) of volumetric video streaming over the Internet.

We then extend our focus to broader immersive content (e.g., volumetric videos, VR/MR), and

Chapter 4 presents Habitus, a generic framework developed by us for mobile immersive content

delivery, enhanced by multipath networking over omnidirectional (e.g., 802.11ac) and mmWave

radios (e.g., 802.11ad), and proactive mmWave throughput prediction. Chapter 5 introduces our

research on image live co-editing (LCE), another emerging networked multimedia application.

In particular, we develop Alice, a cross-platform compression adaptation framework to realize

low-latency user experience for LCE under fluctuating network/computation resources. Next,

in Chapter 6, we switch to an everyday application, video conferencing, and propose NIER, a

practical neural-enhanced video conferencing solution that is suitable for a wide range of usage

scenarios, in particular over challenging/metered networks. Finally, we summarize all related

work in Chapter 7 before concluding the thesis in Chapter 8.
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Chapter 2

Background

This chapter provides a sufficient background of the four emerging networked multimedia appli-

cations studied in this dissertation: volumetric video streaming,mobile immersive content delivery,

image live co-editing, and low-bitrate video conferencing, including the challenges they face, a

brief overview of existing solutions, the core technologies we adopt to boost their quality-of-

experience (QoE) as well as the challenges of applying these technologies.

2.1 Volumetric Video Streaming

Volumetric video is an emerging type of multimedia content. Unlike traditional videos and 360°

panoramic videos [71, 166] that are 2D, every frame in a volumetric video consists of a 3D scene

represented by a point cloud or a polygon mesh. The 3D nature of volumetric video enables view-

ers to exercise six degree-of-freedom (6DoF) movement: a viewer can not only “look around” by

changing the yaw, pitch, and roll of the viewing direction, but also “walk” in the video by chang-

ing the translational position in 3D space. This leads to a truly immersive viewing experience.
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Schemes Refs Advantages (⊕⊕⊕) and Disadvantages (⊖⊖⊖)

Direct Streaming N/A
⊕⊕⊕ Easy to implement, best QoE (if bandwidth is sufficient).

⊖⊖⊖ Highest network bandwidth (BW) usage.

Direct + VA [68, 102]

⊕⊕⊕ Lower BW usage.

⊖⊖⊖ BW saving depends on user’s motion,

QoE depends on motion prediction.

Direct + SR YuZu
⊕⊕⊕ Good QoE, further lower BW usage,

adaptively trades compute resource for BW.

⊖⊖⊖ Requires training.

Remote Rendering [64, 165]

⊕⊕⊕ Lowest BW usage.

⊖⊖⊖ QoE depends on motion prediction,

need edge support (poor scalability).

Table 2.1: Four categories of volumetric video streaming approaches (VA = Viewport Adaptation;

SR = Super Resolution).

As the key technology of realizing telepresence [154], volumetric video has registered numer-

ous applications. They can be viewed in multiple ways: through VR/MR (virtual/mixed reality)

headsets or directly on PCs (similar to how we play 3D games).

Despite the potentials, streaming volumetric videos over the Internet faces a key challenge

of high bandwidth consumption. High-quality volumetric content requires hundreds of Mbps

bandwidth [68, 255]. To improve the quality-of-experience (QoE) under limited bandwidth, prior

work has mostly focused on viewport-adaptive streaming (i.e.,mainly streaming content that will

appear in the viewport) [68, 102, 156]. However, they are ineffective when the entire scene falls

inside the viewport. They also require 6DoF motion prediction that is unlikely to be accurate

for fast motion. Some other proposals explored remote rendering [64, 165] (e.g., having an edge

node transcode 3D scenes into regular 2D frames). However, they require not only 6DoF mo-

tion prediction, but also edge/cloud-side transcoding that is difficult to scale, as summarized in

Table 2.1.
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In Chapter 3, we employ a different and orthogonal approach toward improving the QoE of

volumetric video streaming through 3D super resolution (3D SR). SR was initially designed for

improving the visual quality of 2D images [33, 244]. Recently, researchers in the computer vision

community developed SR models for point clouds [106, 229, 234, 249]. This inspires us to employ

SR for volumetric video streaming, as each frame of a volumetric video is typically either a point

cloud or a 3D mesh.
∗
We present more details and a case study of applying 3D SR to volumetric

video streaming in the following, which motivates our design of YuZu in Chapter 3.

2.1.1 Applying 3D SR to Volumetric Video Streaming: A Case Study

Recently, the computer vision community extended SR to static point clouds [106, 229, 234, 249].

When applied to a video v, SR trains offline a deep neural network (DNN)modelM that upsamples

low-resolution frames L(v) to high-resolution ones H(v), using the original (high-resolution)

frames F (v) for training. In the online inference, the server sends M and L(v) to the client,

which infers H(v) = M(L(v)). SR leverages the overfitting property of DNN to ensure that

H(v) is highly similar to F (v). It achieves bandwidth reduction (or QoE improvement when

bandwidth remains the same) since the combined size ofM and L(v) is much smaller than F (v).

We start with a straightforward approach: applying PU-GAN [106], a state-of-the-art 3D SR

model, to upsample every point cloud frame of a volumetric video. PU-GAN operates by divid-

ing the entire point cloud of a frame into smaller patches, each consisting of a subset of points.

Both SR training and inference are performed on a per-patch (as opposed to a per-frame) basis,

i.e., each patch is upsampled individually. Its DNN model is based on a generative adversarial

∗
We focus on point-cloud-based volumetric videos in this work, but the key concepts of YuZu also apply to

mesh-based volumetric videos.
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network (GAN) and realizes three key stages: feature extraction, feature expansion, and point set

generation.

We next describe a case study using PU-GAN to motivate YuZu. Our testing video was cap-

tured by three depth cameras. It has 3,622 frames, each consisting of ∼100K points depicting a

performing actor. We refer to this video as Lab. We use all its frames to train a PU-GAN model.

We set the SR ratio (i.e., upsampling ratio) to 4, making the input and output point clouds consist

of roughly 25K and 100K points, respectively.

We have both positive and negative findings from this case study. On the positive side, the

model can accurately reconstruct each individual frame, i.e., each upsampled point cloud is highly

similar to the original one in terms of the geometric structure, as quantified by the Earth Mover’s

Distance (EMD [179]):

LEMD(I,G) = min
ϕ∶I→G

1

∣I ∣∑x∈I
∣∣x − ϕ(x)∣∣2 (2.1)

where I and G are the upsampled point cloud and the ground truth, respectively; ϕ ∶ I → G

is a bijection from the points in I to those in G. The average EMD value across all frames is

1.47cm, which confirms good upsampling accuracy [106]; it is also verified by our IRB-approved

user studies (§3.3.2). Also encouragingly, we find that SR indeed achieves significant bandwidth

savings. For this 2-minute video, the compressed sizes of F (v), M , and L(v) are 1.40 GB, 560

KB, and 0.36 GB, respectively, leading to a bandwidth reduction of 74.2%.

Despite the above encouraging results, we notice threemajor issues from the above case study.

●ALack of Quality-of-Experience (QoE)Model. For traditional 2D video streaming, there ex-

ist numerous studies on modeling the viewer’s QoE [18, 248, 216]. In contrast, volumetric videos
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are still in their infancy. There is a lack of generic QoE models that researchers can leverage, not

to mention a lack of understanding of how SR impacts QoE.

● Unacceptably Poor Runtime Performance. 3D SR models are computationally much more

heavyweight than 2D SR models. When applying PU-GAN to the above video, the runtime per-

formance is extremely poor. On a machine with an NVIDIA 2080Ti GPU, the upsampling FPS is

only 0.1, far below the desired FPS of at least 30. Besides, the GPU memory usage of PU-GAN is

7GB (out of the 11GB available memory of 2080Ti). This is one reason why all the off-the-shelf

3D SR models operate on a per-patch basis, as this saves memory compared to processing a full

frame.

● No Color Support. We find that no existing 3D SR model can restore the color information of

upsampled point cloud.

Note that the last two limitations are common in that they also apply to all other 3D SRmodels

for point clouds that we have examined, such as MPU [229] and PU-Net [249].

2.2 Mobile Immersive Content Delivery

Immersive content, such as virtual/mixed reality (VR/MR) and volumetric videos, allows viewers

wearing VR/MR headsets to exercise six-degree-of-freedom (6-DoF) motion (yaw, pitch, roll, X,

Y, Z), offering a truly engaging experience [68, 135, 140, 103]. Networked immersive content

delivery systems require tremendous network resources (e.g., hundreds Mbps or even Gpbs for

high-quality volumetric videos [68, 254, 102]). This poses a major challenge for mobile immersive

content delivery systems, which use wireless radios instead of HDMI/USB cables [219, 218] for

content delivery.
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Recent advances in millimeter wave (mmWave) radio technologies make it feasible to trans-

mit immersive content at a multi-Gbps data rate. mmWave protocols such as 802.11ad [147]

(802.11ay [55] in the future) and mmWave 5G [70] have been commercialized on commodity

mobile devices. Despite its high data rate, compared to omnidirectional radio, mmWave radio

is much more vulnerable to blockage/mobility and its signal attenuates much faster [147]. This

creates a major issue for immersive applications where viewers are in constant motion and the

human body may easily block the line-of-sight. To overcome this issue, existing systems take

three categories of approaches.

● Improving the PHY layer. Numerous studies have been conducted on the mmWave radio in

general, such as improving MIMO [54] and beamforming [233, 226].

● Enhancing line-of-sight (LoS). Some off-the-shelf commercial products [221]mount themmWave

radio on top of a VR headset to avoid blockages.

● Using specialized equipment. Some prior research [2] proposes to deploy multiple reflectors

paired with a custom PHY protocol design to improve VR performance over mmWave.

The above approaches help but all have limitations. Engineering the PHY layer alone is inad-

equate to handle, e.g., the throughput fluctuation incurred by viewers’ fast motion. Mounting the

radio overhead may still incur frequent non-line-of-sight (NLoS) blockages (e.g.,when the viewer

looks up/down, raises arms, or passes through an obstacle). Adding reflectors to combat NLoS

raises the deployment bar and is incompatible with commodity mmWave protocols. Even in the

absence of blockage, highly dynamic user mobility can still cause significant performance drops

of mmWave [201, 183, 5].
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Figure 2.1: Spatial heatmap of 802.11ac/ad throughput in a room.

In the following, we present a case study of applying mmWave to immersive content delivery

using mobile volumetric video streaming as an example, which motivates our design of Habitus

in Chapter 4.

2.2.1 ApplyingmmWave to Immsersive Content Delivery: A Case Study

Despite their great potentials on boosting immersive content delivery [68, 102], mmWave sig-

nals suffer from increased attenuation, mobility, and blockages [147]. In contrast, 802.11ac oper-

ates at the 5GHz band with omnidirectional signal propagation, providing lower but more stable

throughput than 802.11ad. In a case study conducted in a personal office (Figure 4.3), we investi-

gate how the PHY properties of ac and ad affect the QoE of immersive content delivery. Using a

smartphone [176] mounted on the user’s head and a volumetric video streaming application [68],

we measure the QoE while the user walks around the room. Results show that using 802.11ad

greatly improves the content quality by 113%, but also hugely increases the video stall by 502%

due to its fluctuating throughput under user mobility (Figure 2.1). Our case study reveals that ac

and ad have distinct network performance due to their complementary PHY properties, andmotivates

us to strategically combine them to enhance the QoE of immersive content delivery.
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A plethora of studies focus on improving the communication quality of mmWave on the PHY

layer [54, 233, 226], while ignoring contextual information for immersive content delivery where

a viewer’s full body is constantly inmotion. On the other side, although solutionswith application

domain knowledge (e.g., [2, 221]) have shown some effectiveness, they are either incompatible

with existing PHY-layer protocols [2] or still suffer from significant LoS blockages [221]. Such

a gap motivates us to propose solutions that judiciously leverage viewer’s full-body motion to fa-

cilitate mmWave performance forecast, while being compatible to commercial mmWave protocols

(802.11ad, mmWave 5G/6G, etc.) and easily integrable into diverse immersive applications.

2.3 Image Live Co-editing

Live co-editing (LCE) applications [60, 155, 50, 47] have become crucial for boosting workplace

productivity. Emerging image LCE tools [159], which are newer and less studied compared to

their text-based counterparts, extend these capabilities to image editing. Ideally, image LCE tools

should possess three essential features to enhance work flexibility and enable efficient collabora-

tion from anywhere at any time: lossless information transmission, low-latency interactions, and

scalability. However, image LCE systems are still in their early stages and lack substantial re-

search. Chapter 5 conducts a latency-focused study of cloud-based image LCE systems. We focus

on achieving a low-latency user experience, where latency is defined as the elapsed time between

when a user makes an edit to a shared image on their local machine and when the edit appears on

the devices of other users.
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Many networked multimedia applications, such as video streaming and real-time communi-

cation, face similar challenges as thosementioned above. Existing approaches to reducing end-to-

end multimedia transmission latency can be categorized into three main strategies: (1) Reducing

in-network queuing delay. Numerous studies [133, 223, 204] focus on minimizing queuing delays

on the network side; (2) Adaptive streaming. Adaptive bitrate (ABR) algorithms are widely used

to ensure timely video delivery under fluctuating bandwidth conditions [197, 166, 68]; and (3)

Accelerating compression. Some studies [191] reduce image compression latency by leveraging

high-performance computing units, such as GPUs.

The above approaches provide benefits but have limitations in the context of image live co-

editing. Reducing in-network queuing delay can be helpful, but overall latency may still be con-

strained by network limitations due to the low compression ratio of lossless compression. Adap-

tive streaming relies on lossy compression, which is incompatible with image LCE’s requirement

for lossless compression, limiting its applicability. Accelerating compression through extensive

parallelization demands high on-device computational power, which may not always be avail-

able. Additionally, network constraints may still impose latency limits due to the restricted com-

pression ratio of lossless methods.

We next provide an overview of the basic cloud-based image LCE system, and the resource

uncertainty in image LCE, which motivates us to develop Alice in Chapter 5.

2.3.1 Basic Image LCE System Overview

We begin by introducing the cloud-based image LCE system, which serves as the foundation of

this work. As shown in Figure 2.2, the system consists of a server and multiple clients. All shared
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Figure 2.2: The image LCE system using a server-client architecture.

images are initially stored on the LCE server. When a new image LCE session starts, the server

distributes the shared image to all participating clients. Once users have local copies, they can

begin editing. LCE clients capture user edits on the local image, send these edits to the server,

and apply edits received from the server to their local copies. The LCE server manages conflicts

arising from concurrent edits by different clients and distributes valid edits to all users.
†

The image LCE system transmits image edits by sending their pixel data over the network,

optionally compressed using lossless techniques. We refer to this approach as data-based trans-

mission. Specifically, a shared image is spatially segmented into smaller, non-overlapping tiles,

each with a lower resolution (e.g., 512×512, 1024×1024, etc.), and a single channel, unlike the

multi-channel full image. Compression and transmission of image edits occur on a per-tile ba-

sis, involving only the tiles affected by the edit (e.g., the red area in Figure 2.2). This design is

inspired by viewport-adaptive streaming in immersive video systems [166, 68], which transmits

only the content within the viewer’s viewport to conserve bandwidth. In the context of image

†
We assume that conflict management is efficient and does not introduce a significant end-to-end latency bot-

tleneck. Therefore, we do not discuss its details in this work.
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Figure 2.3: CDF of FCC mobile uplink throughput in Jan. 2023 [131].

LCE, the area affected by the edit serves as a conceptual “viewport" for transmission. Our user

study results (§5.3) further validate this design choice.

2.3.2 Resource Uncertainty In Image LCE

Achieving consistently low-latency performance in image LCE systems is challenging, especially

in mobile use cases, due to the following factors: (1) Unreliable wireless communication: Mobile

networks are inherently unstable, with frequent oscillations and reliability issues across all avail-

able infrastructures [70, 108, 78, 240]. For example, Figure 2.3 presents the FCC’s mobile broad-

band uplink throughput distribution in 10 major U.S. cities (January 2023) [131]. The average

and median throughputs are 11.41 Mbps and 8.95 Mbps, respectively, with a standard deviation

of 11.54 Mbps. For 90% of the time, uplink throughput remains below 25Mbps; (2) Heterogeneous

computational resources: Image LCE clients run on diverse platforms (e.g., laptops, tablets, and

web), leading to significant variations in computational capabilities; and (3) Varying complexities

of image editing operations: Image edits differ widely in computational intensity, making it diffi-

cult to design a one-size-fits-all solution. These motivates us to enhance the adaptability of image

LCE systems to better cope with varying resource constraints.
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2.4 Low-bitrate Video Conferencing

Video conferencing requires a substantial amount of network bandwidth. For example, Zoom

requires at least 1.2 Mbps bandwidth for both uplink and downlink in a 1-on-1 video call at

720p [267], which amounts to ∼1.05 GB of data for a one-hour session. Low-bitrate video confer-

encing thus benefits multiple stakeholders: streaming platforms spend less on network infrastruc-

tures; cellular providers see reduced peak-hour traffic; mobile customers pay less over metered

links; and most importantly, end users perceive better quality-of-experience (QoE) under chal-

lenging network conditions.

A promising approach to realize low-bitrate video conferencing with decent QoE is to stream

low-resolution video frames using traditional video codecs such as H264 [172], HEVC [203], and

VPX [20], and then apply image enhancement techniques like super-resolution (SR) [195] at the

receiver to boost visual quality. One limitation of this approach is that, for efficiency, all tra-

ditional codecs incur high temporal dependency; i.e., they produce P-frames whose decoding

depends on prior I- or P-frames. As a result, a single packet loss can lead to the undecodability

of multiple consecutive frames. Note that packet losses are prevalent in challenging network

conditions – a key usage scenario of low-bitrate video streaming.

There are a few techniques to counteract packet losses for real-time video communication,

such as retransmissions, forward error correction (FEC) [141, 180], error concealment [228], and

advanced loss-resilient neural codecs [36, 107]. However, they suffer from various limitations

such as prolonged latency, extra bandwidth cost, low compression efficiency, and prohibitively

high compute overhead, respectively.
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In Chapter 6, we develop a practical low-bitrate video conferencing solution, referred to as

NIER, by leveraging a technique called key-point-based deep image animation (DIA) as a key build-

ing block.

In the following, we providemore details of key-point-based DIA, and also present the current

naive key-point-based DIA enhanced low-bitrate video conferencing solution, which motivates

our design of NIER in Chapter 6.

2.4.1 Key-point-based Deep Image Animation

The deep image animation (DIA) technique [242, 192, 227] was originally developed to animate

a static image (e.g., a static human portrait) by imitating the motion and deformation of another

video clip (e.g., a video of a talking person). The static image to animate is denoted as the “ref-

erence frame” fR
, while each frame i in the video clip is referred to as a “driving frame” fD

i . For

each frame fD
i in the video clip, we can apply its motion and deformation to animate the static

image fR
and generate a new frame fG

i , by feeding fD
i and fR

together into a DIA framework

A, i.e.,

fG
i = A(fR, fD

i ) (2.2)

A state-of-the-art type of DIA is the key-point-based DIA [192, 193, 194, 227], which typically

consists of three key components: a key-point extractor K , a motion estimator E, and a frame

generator G. All of them are deep neural networks (DNN) and trained in a self-supervised and

end-to-end way.

The key-point extractor K extracts n (e.g., 10) key-points from a frame f , where a key-point

pj is defined as its 2D coordinate (xj, yj) with some point-wise attributes aj (e.g., a 2 × 2 local
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affine transformationmatrix [104]). We follow this definition of key-point in the rest of this paper.

The key-point extraction process is thus denoted as

K(f) = {pj ∣ 1 ≤ j ≤ n} and pj = {(xj, yj), aj} (2.3)

The motion estimator E takes the reference frame fR
along with its key-points {pj}R, and the

key-points {pj}Di of a driving frame fD
i , as the input. It outputs a motion field oi (i.e., a dense

optical flow [23]), and an occlusion maskmi, i.e.,

{oi,mi} = E(fR,K(fR),K(fD
i )) (2.4)

The frame generator G is a generative model containing three stages: feature encoding, feature

warping, and feature decoding. It takes the reference frame fR
, and the motion estimation output

{oi,mi} of a driving frame fD
i as its input and generates a new frame fG

i , i.e.,

fG
i = G(fR, oi,mi) (2.5)

Specifically, the feature encoder extracts the reference features from fR
, which are used to derive

the features of fG
i along with the motion field oi through warping. The feature decoder then

generates fG
i with the warped features. However, due to the motion and deformation of the

object, not all the features of fG
i should be directly warped from the reference feature. Therefore,

before feeding the warped features to the feature decoder, the occlusion mask mi is applied on

them to mask out those useless features.
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Figure 2.4: Naive solution for key-point-based DIA enhanced video conferencing.

2.4.2 Key-point-based DIA Enhanced Low-bitrate Video Conferencing:

A Naive Solution

Several recent studies have explored applying the key-point-based DIA to low-bitrate video con-

ferencing [4, 153]. They follow a common system design as shown in Figure 2.4: the key-point

extractor K resides on the sender side, while the motion estimator E and frame generator G

are on the receiver side. When a video call starts, the sender first sends a high-resolution im-

age of their portrait (i.e., the reference frame fR
in Figure 2.4) to the receiver. After that, the

sender extracts the key-points {pj}Di from each newly captured frame (i.e., the driving frame fD
i

in Figure 2.4), and transmits them to the receiver. The receiver uses the key-points {pj}Di and the

reference frame fR
to generate a frame fG

i and then render it to the user. This approach achieves

a low bitrate since the size of the key-points {pj}Di is much smaller than the size of its frame fD
i

encoded by a traditional video codec [20, 203, 172].

Issues of the Naive Solution. We conduct a case study using the above architecture to

motivate NIER. We train FOMM [193], a representative key-point-based DIA model, following
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Figure 2.5: Quality drop over time for our test video (§2.4.2).

the setup in §6.5.1, and convert it to the ONNX [148] format for execution. We use one test video

(§6.5.1), which has 1800 frames (1-minute playback at 30 FPS). We set up a 1-on-1 video call on

a MacBook M1 2020 [10] with Neural Engine, using our trained model. We have both positive

and negative findings. On the positive side, this approach indeed achieves low bitrate. Our 1-

minute video only requires an average ∼61.45 Kbps bitrate, consisting of a constant 56.25 Kbps

for sending 10 key-points (FOMM [193]’s default setting, no entropy coding) at 30 FPS, and an

average ∼5.2 Kbps for sending the initial 35-KB reference frame. Meanwhile, we notice four major

issues in this naive system architecture.

● Issue 1: Quality Degradation over Time. The naive solution only sends the reference frame

once at the beginning. This can lead to a severe degradation of the frame generation quality over

time. As Figure 2.5 shows, the generation quality in PSNR of our test video drops hugely from

∼32.5 to ∼23 after 10-second playback. Note that there is not much motion in our test video. In a

scenario where more motion is involved and/or the session lasts a long time (e.g., half an hour or

even longer), the quality decrease can be more significant.

● Issue 2: A Lack of Bandwidth Adaptation Mechanism. The above design blindly sends

key-points without awareness of the potential bandwidth fluctuation, especially for wireless net-

works [169, 70, 182]. This can cause network congestion and delay key-points delivery, which

further leads to video freeze and degrades users’ QoE (quality-of-experience).
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● Issue 3: Not Resilient to Packet Loss. Though by encoding a frame as key-points, a lost

packet only affects the decoding of one frame (we do not consider inter-frame coding since the

key-points bitrate is already very low), users’ QoE can still significantly drop when packet loss

rate increases. Two common approaches, retransmission and FEC, can help but are sub-optimal

in the low-bitrate scenario: they either incur a substantial delay or rely on an accurate packet

loss rate estimation, and both need to send redundant data.

● Issue 4: Poor Runtime Performance. Key-point-based DIA is computationally heavy. On

our test laptop, the frame generation of vanilla FOMM achieves only 11 FPS, with a high process-

ing latency of 101 ms (sender + receiver side).
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Chapter 3

YuZu: Neural-enhanced Volumetric Video Streaming

3.1 Introduction

Today’s multimedia content is gaining not only higher resolutions, but also higher degrees of

immersion, as demonstrated by, for example, the popularity of 360° panoramic videos [166]. An-

other emerging type of multimedia content is volumetric videos that bear even more immersion

and user interactions. As described in §2.1, streaming high-quality volumetric videos over the In-

ternet faces a key challenge of extremely high bandwidth consumption, and all existing solutions,

such as viewport-adaptive streaming and remote rendering, have limitations.

In this chapter, we employ a different and orthogonal approach toward improving the QoE

of volumetric video streaming through 3D super resolution (3D SR). As introduced in §2.1, SR

was initially designed for improving the visual quality of 2D images [33, 244], and the recent

advancement in SR models for static point clouds inspires us to employ SR for volumetric video

streaming, as each frame of a volumetric video is typically either a point cloud or a 3D mesh.
∗
Al-

though there have been recent successful attempts on applying SR to 2D video streaming [42, 91,

∗
We focus on point-cloud-based volumetric videos in this work, but the key concepts of YuZu also apply to

mesh-based volumetric videos.
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247], our case study in §2.1.1 shows that 3D-SR-enhanced volumetric video streaming is unique

and challenging due to the following reasons.

● There is a fundamental difference between pixel-based 2D frames and volumetric frames con-

sisting of unstructured 3D points, making processing volumetric videos (even without SR) vastly

different from 2D videos.

● Due to its 3D nature, the computation overhead of 3D SR is very high. We apply off-the-

shelf 3D SR models to volumetric videos [1], and find that the runtime performance of 3D SR is

unacceptably poor – achieving only ∼0.1 frames per second (FPS) on a PC with a powerful GPU.

In contrast, 2D SR can achieve line-rate upsampling by simply downscaling the model [247], but

we find that only doing model downscaling is far from being adequate for line-rate 3D SR (i.e., at

30+ FPS).

● Given its recent debut, there lacks research on basic infrastructures such as tools and models

supporting volumetric video streaming. For example, there is no QoEmodel for volumetric videos

that can guide bitrate adaptation or critical SR parameter selection; the wide range of factors

affecting the QoE make constructing such a model quite challenging.

● There are other practical challenges to overcome, such as a lack of color produced by today’s

3D SR models.

To address the above challenges, we begin by developing to our knowledge a first QoE model

for assessing SR-enhanced volumetric video streaming. The model takes into account a variety
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of factors that may affect the QoE, such as video resolution (i.e., point density)†, viewing dis-

tance, upsampling ratio, SR-incurred distortion, and QoE metrics from traditional video stream-

ing. We validate our model by conducting two IRB-approved user studies involving 1,446 volun-

tary participants from 40 countries, using a major genre of volumetric content, i.e., portraits of

single/multiple people. The validation results confirm its accuracy, with a median QoE estima-

tion error of 12.49%. Our user studies offer definitive evidence that 3D SR can significantly boost

the QoE of volumetric video streaming.

Next, we design, implement, and evaluate YuZu, which is to our knowledge the first volumet-

ric video streaming system enhanced by SR. At its core, YuZu deeply optimizes the end-to-end

upsampling pipeline in three aspects: intra-frame SR, inter-frame SR, and network-compute re-

source management, whose synergy helps drastically improve the runtime performance of SR

while retaining the inference accuracy.

For intra-frame SR, our approaches are not limited to generic optimizations for deep learn-

ing models such as modifying SR models’ structures for fast-paced SR. More importantly, we

consider the factors that are unique to 3D SR and its data representation: we design a mecha-

nism that leverages the low-resolution content (i.e., the input to the SR model, which is typically

discarded after being fed into the model) to reduce the SRmodel complexity; we also trim the pre-

processing and post-processing stages of 3D SR and tailor them to volumetric video streaming.

Note that these optimizations are generic, applicable to all the 3D SR models we have investi-

gated [106, 229, 234, 249].

†
The resolution of a point cloud is defined as its point density; the resolution of a volumetric video is the avg.

resolution of its point cloud frames.
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For inter-frame SR, YuZu speeds up SR by caching and reusing 3D SR results across con-

secutive frames. Realizing that none of the 2D inter-frame encoding techniques can be directly

applied to volumetric videos, we design an effective inter-frame content reference scheme for SR-

enhanced point cloud streams, followed by robust criteria determining whether SR results can be

reused between two frames. We then extend reusing SR results from two to multiple consecutive

frames through a dynamic-programming-based optimization. The synergy of the above intra-

and inter-frame acceleration schemes fills the huge gap between off-the-shelf 3D SR models’ per-

formance and what is required for line-rate upsampling of point cloud streams.

YuZu further performs network-compute resource management through making judi-

cious decisions about the quality level of the to-be-fetched content and its upsampling ratio.

These two decision dimensions are subject to the dynamic network bandwidth and limited com-

pute resources, respectively, which need to be jointly considered given their complex tradeoffs –

a unique challenge compared to traditional adaptive bitrate (ABR) video streaming. YuZu takes a

QoE-driven approach by maximizing the utility function derived from our QoE model. To solve

the underlying optimization problem in real time, we develop a hybrid, two-stage algorithm that

employs coarse-grained and fine-grained search at different time to efficiently find a good ap-

proximate solution. In addition, YuZu performs fast colorization of SR results through efficient

nearest point search.

We implement the above components and integrate them into YuZu in 10,848 lines of code.

Our extensive evaluations indicate that YuZu can achieve line-rate, adaptive, high-quality 3D SR.

We highlight key evaluation results as follows.

● Our user study suggests that 3D SR can boost the volumetric video QoE by 37% to 178% com-

pared to no SR.
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● Our optimizations speed up 3D SR by 140× to 542× and reduce GPU memory usage by 68% to

90% with no accuracy degradation, compared to the vanilla SR models [106, 229].

● Compared to a recently proposed viewport-adaptive volumetric video streaming system [68],

YuZu improves the QoE by 100.6% to 174.9%.

To summarize, we make the following contributions.

●We build an empirical QoE model for SR-enhanced volumetric videos, and validate it through

large-scale user studies involving 1,446 participants. We build our models using volumetric con-

tent of single/multiple human portraits, a major application of volumetric video streaming. Note

that the model can be applied to non-SR volumetric videos belonging to the same genre, with an

SR ratio of 1.

●We propose and design YuZu, an SR-enhanced, QoE-aware volumetric video streaming system.

●We implement YuZu, and conduct extensive evaluations for its QoE improvement and runtime

performance.

3.2 YuZu Overview

YuZu is to our knowledge the first SR-enhanced volumetric video streaming system. It streams

video-on-demand volumetric content stored on an Internet server to client hosts. On the server

side, the volumetric video is divided into chunks each consisting of a fixed number of frames

(i.e., point clouds encoded by schemes such as Octree [80, 132] and k-d tree [82, 114]). Each

chunk is encoded into multiple versions with different resolutions (i.e., point densities). The SR

model training and volumetric content preprocessing (e.g., patch reuse computation, see §3.4.2)

are performed offline on the server side. Similar to a typical DASH server, the YuZu server is
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Figure 3.1: The system architecture of YuZu.

stateless (and thus scalable), and all the streaming logic runs on the client side. As shown in

Figure 3.1, the client fetches from the server the video chunks, which can possibly be at a low

resolution. Since 3D SR models typically operate on a per-patch basis, the client segments each

frame into patches, upsamples them through 3D SR, efficiently colors them (§3.4.4), and renders

them to the viewer.

To achieve line rate SR,YuZu employs novel optimizations tailored to SR-enhanced volumetric

video streaming. Regarding intra-frame optimizations, off-the-shelf 3D SRmodels are strategically

adapted; low-resolution patches before SR are properly leveraged instead of being discarded; and

the patch generation is accelerated (§3.4.1). For inter-frame optimizations, previous SR results are

judiciously reused (§3.4.2).

A crucial decision that YuZu must make is to determine what resolution (quality level) to

fetch for each chunk, as well as which SR ratio to apply for upsampling each patch, subject to

the resource constraints jointly imposed by the network and computation. YuZu addresses this

through a principled, efficient, and QoE-driven discrete optimization framework (§3.4.3). The
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framework utilizes a first-of-its-kind QoE model that we derive from ratings of 1,446 real users

(§3.3).

3.3 QoE Model for Volumetric Videos

For SR-enhanced volumetric video streaming, its QoE is affected by a wide range of factors. The

large space formed by these factors and their interplay make constructing QoE models much

more challenging than conventional videos.

3.3.1 An Empirical QoE Model

We first enumerate factors that may affect the QoE for SR-enhanced volumetric video stream-

ing. They are derived based on the domain knowledge of SR and our communication with other

volumetric video viewers.

● Point Density. Similar to 2D image resolution, a 3D object with a higher point density (reso-

lution) contains more details and thus offers a better QoE.

● Viewing Distance. As the viewing distance increases, a rendered 3D object becomes smaller

in the displayed view, and is thus less sensitive to quality degradation.

● SR Ratio and Distortion. A higher SR ratio leads to a higher point density (and thus more

QoE gain), but also potentially higher distortions (and thus more QoE loss).

● Artifacts caused by Patches. As described in §2.1.1, a typical 3D SR model operates by up-

sampling individual point subsets called patches. If patches within a frame have non-uniform

qualities (caused by different SR ratios), the perceived QoE will be affected.
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● Invisibility due to Finite Viewport and Occlusion. Due to the 3D nature of volumetric

videos, a viewer can see only content that is inside the viewport and not occluded. Outside-

viewport or occluded content brings no impact on the QoE.

●QoEMetrics forRegularVideo Streaming. They include factors such as stall and inter-frame

quality switches [248].

Next, we develop an empirical QoE model that considers the above factors. Since SR is per-

formed on a per-patch basis, we first model the QoE for each individual patch as:

qi,j = g(di,j, ri,j, δi,j) − h(EMD,δi,j) (3.1)

where qi,j is the quality of patch j in frame i; di,j is the patch’s original point density before SR;

δi,j is the viewing distance to the patch; ri,j is the SR ratio of the patch. Eq. 3.1 has two terms: g(⋅)

considers the patch’s perceived density after SR, and h(⋅) accounts for the QoE penalty incurred

by SR distortion, quantified by the viewing distance and the EMD (Eq. 2.1) between the upsampled

patch and the high-quality patch (ground truth). We empirically define g(⋅) and h(⋅) as:

g(di,j, ri,j, δi,j) = w1(δi,j) × di,j × ri,j (3.2)

h(EMD,δi,j) = w2(δi,j) ×EMD (3.3)

where w1(δi,j) and w2(δi,j) are weights parameterized on δi,j . Intuitively, in Eq. 3.2, after SR,

the perceived point density improves by a factor of ri,j ; the QoE gain brought by a higher point

density after SR (Eq. 3.2) and the QoE penalty caused by SR distortion (Eq. 3.3) depend on the

viewing distance.
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Now given a single frame i, we define its quality Qi as the average of all its visible patches’

quality values:

Qi =
∑j vi,jqi,j

∑j vi,j
(3.4)

where vi,j ∈ {0,1} is 1 iff the patch is visible, i.e., it falls inside the viewport and is not occluded

by other patches. To account for the artifacts caused by patches, we define inter-patch quality

switch Ipatchi as the quality variation across the visible patches within frame i. To account for

inter-frame quality switches, we define inter-frame quality switch Iframe
i as the quality change

from frame i − 1 to frame i:

Ipatchi = StdDev ({qi,j ∣∀j, vi,j > 0}) (3.5)

Iframe
i = ∥Qi −Qi−1∥ (3.6)

For a volumetric video playback, a possible way to model its overall QoE is a linear combina-

tion of Qi, I
patch
i , Iframe

i , and Istalli (the stall of frame i). We choose a linear form that is widely

used in 2D Internet videos [248]. Thus, we have

QoE =∑
i

Qi −∑
i

µp(δi)Ipatchi −∑
i

µf(δi)Iframe
i −∑

i

µs(δi)Istalli (3.7)

Note that depending on the viewing distance, the weights µp, µf , and µs may differ (e.g., view-

ersmay bemore sensitive to stalls whenwatching a scene at a closer distance), sowe parameterize

the weights with the viewing distance. In Eq. 3.7, δi summarizes the viewing distances to all the

patches in frame i. We empirically choose δi = (∑j vi,jδi,j)/(∑j vi,j). Also note that the above
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Age

18-25: 21.8%, 26-30: 29.0%,

31-35: 20.4%, 35+: 28.8%

Gender

Male: 60.3%, Female: 39.2%,

Other: 0.5%

US: 55.0%, IN: 28.1%,

Country BR: 5.0%, IT: 2.7%,

(40 Total) UK: 1.2%, DE: 1.0%,

CA: 0.9%, Other: 6.1%

Education

Bachelor: 59.1%,

Master: 23.8%, Other: 17.1%

Table 3.1: Demographics of the 1,446 subjects in our user studies.

model is generic and applicable to non-SR-enhanced and non-patch-based volumetric videos as

it encompasses special cases without using SR (ri,j=1) or patches (I
patch
i =0).

3.3.2 Model Validation through User Studies

We next conduct user studies with two purposes: validating our QoE model and deriving the

model parameters. Our QoE model considers many factors as described in §3.3.1. The high-level

approach of the user study is to let participants subjectively rate the QoE for all the combina-

tions of the above factors’ different degrees of impairments, and then use the subjects’ ratings to

train/validate our QoE model.

We conduct two separate studies referred to as Study-SR and Study-All. Study-SR studies

the QoE model for qi,j (Eq. 3.1) while keeping Ipatchi , Iframe
i , and Istalli as zero. This allows us

to measure the impact of SR without interference from other factors. Study-All focuses on the

overall QoE model (Eq. 3.7). We obtained IRB approvals for both studies. Instead of performing

in-person studies, we conduct both studies online by letting users watch pre-generated videos

capturing the rendered viewports (with impairments). We take this approach because: (1) it

allows vastly scaling up the study, (2) it helps get diverse users worldwide, and (3) the IRB forbids
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Scheme 1×1 1×2 1×3 1×4 2×1 2×2 3×1 4×1
Pt. density 25% 25% 25% 25% 50% 50% 75% 100%

SR ratio - ×2 ×3 ×4 - ×2 - -

Table 3.2: 8 impaired versions (except 4×1) of a video segment. In scheme m × n, m is the point

density level and n is SR ratio.

in-person user studies during COVID-19. We have collected responses from 1,446 subjects, whose

demographics are shown in Table 3.1.

3.3.2.1 User Study Setup

Volumetric Videos. In our user studies (Study-SR in §3.3.2.2 and Study-All in §3.3.2.3), we

use four videos: Long Dress showing a dancing female, Loot showing a speaking male, Band

showing three people playing instruments, and Haggle showing three people debating. Long

Dress and Loot are obtained from the 8i dataset [1], each consisting of 800K points per frame for

10 seconds. Band and Haggle are from the CMU Panoptic dataset [87], each consisting of 300K

and 100K points per frame, respectively; we select 10-second segments for our study. For each

video, we create 8 versions listed in Table 3.2. Note that since the participants need to watch a

large number of impaired copies, the video length (10 seconds) has to be short. Also note that

the videos have different point densities, as we want to make the QoE model generic, applicable

to different resolutions. We will experimentally verify this shortly.

6DoFMotion Traces and Viewing Distances. We conducted a separate IRB-approved user

study (before COVID-19) for collecting 6DoF motion traces of volumetric videos. Specifically, we

captured the viewport trajectories of 32 users who watched the four video segments (Lab, Dress,

Loot, Haggle) introduced in §2.1.1 and above through either a mixed reality headset (Magic Leap

One [126]) or an Android smartphone. All these video segments are at their highest quality levels
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Figure 3.2: Distribution of viewing distance in our motion traces.

(i.e., point densities) without applying SR.We developed custom volumetric video players for both

device types. The 6DoF motion data (yaw, pitch, roll, X, Y, Z) was captured at the granularity of

30 Hz. The participants are diverse in terms of their education level (from freshman to Ph.D.),

gender (16 females), and age (from 22 to 57). We determine the viewing distances used in our

user study (Study-SR in §3.3.2.2 and Study-All in §3.3.2.3) by analyzing the collected traces. As

shown in Figure 3.2, about 70% of the viewing distances are less than 4m. Therefore, we set the

maximum viewing distance to be 4m for our user studies, and select the other three distances by

evenly dividing this maximum distance into four ranges (i.e., at 1, 2, and 3m).

3.3.2.2 Study-SR: How Much QoE Gain Can SR Bring?

We start by studying the QoE gain brought by SR. Specifically, we study the QoE model for qi,j

(Eq. 3.1) while keeping Ipatchi , Iframe
i , and Istalli as zero. This allows us to measure the impact of

SR without interference from other factors.

We use the four videos introduced in §3.3.2.1 for the experiment. We apply our optimized

PU-GAN algorithm (details in §3.4.1) to perform upsampling, and create (82) = 28 video clips

where each clip contains 2 out of 8 versions in Table 3.2 side by side (in a random order). This
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approach is known as the double stimulus comparison scale (DSCS) method [85] as recommended

by ITU (International Telecommunication Union). We repeat the above process for four viewing

distances: 1m, 2m, 3m, and 4m, which are determined from a separate IRB-approved user study

whose details are described in 3.3.2.1. To maintain a fixed viewing distance d, we display the

viewport at dmeters in front of and facing the viewer. We generate 112 video clips at 4K resolution

for each video segment.

Next, we design a survey using Qualtrics [167] and publish it on Amazon Mechanical Turk

(AMT) [9]. In the survey, we invite each paid AMT subject to view the 112 clips of a random

video segment (out of the 4 videos) in a random order. After watching each clip, the subject is

asked to rate which side provides a better QoE through 7 choices (“left looks {much better, better,

slightly better, similar to, slightly worse, worse, much worse} than right”).

Converting User Ratings to Numerical Scores. For a given tuple of (user, viewing dis-

tance, video segment), we construct a weighted directed graph for the user based on his/her

ratings, where the nodes are the 8 schemes. Assume a video clip contains schemes A (on the left)

and B (on the right). If the user thinks that the left (right) is much better, better, or slightly better

than the right (left), we add an edge from B to A (A to B) with a weight of 3, 2, and 1, respectively.

If the user thinks that the left is similar to the right, we add two edges between A and B, one

from A to B and the other from B to A, with both edges’ weights set to 0. We then normalize the

weights of all the edges to [0,1] and apply the PageRank algorithm [27] to each graph to com-

pute the weight of every node. We then use the weights (multiplied by 10 for easy interpretation)

as the numerical scores of the 8 schemes for the corresponding (user, viewing distance, video

segment) tuple. Finally, for each of the 8 schemes under a given viewing distance, we average

the numerical scores across all the tuples (of that viewing distance) to obtain the results shown
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Figure 3.3: The average ratings of the 8 versions across all the users watching all the four video

segments (Long Dress, Loot, Band, and Haggle).

in Figure 3.3. Note that for each viewing distance, the weights of all the schemes (in each of the

graphs) add up to 1. As a result, the numerical scores of the same scheme for different viewing

distances are not directly comparable.

Results and Takeaways. We have collected 512 subjects’ responses with a total number of

57,344 ratings. Figure 3.3 shows the average ratings of the 8 versions across all the users. The

four subplots correspond to the four viewing distances. We make four observations. First, when

the viewing distance is short, SR can effectively boost the QoE. For example, at 1m, compared

to 1×1, the (user-rated) QoE increases by 37%, 75%, 150% for 1×2, 1×3, and 1×4, respectively;

2×2 improves the QoE by 178% compared to 2×1. Second, under the same point density, the

upsampled version’s QoE is usually lower than the original content’s QoE, in particular when
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Videos: {Long Dress, Loot [1]; Band, Haggle [87]}
Avg. frame quality Qi: 7 values uniformly selected from Table 3.2

Avg. distance disti,j : {1m, 2m, 3m, 4m}

Avg. inter-patch switch Ipatchi : {0.00,0.45,0.90}

Avg. inter-frame switch Iframe
i : {0.00,0.45,0.90}

Avg. stall Istalli : {0.00,0.01,0.03}

Table 3.3: The factors and their values selected for model validation.

the SR ratio is large. This is caused by SR’s distortion. However, the gap tends to reduce as the

SR ratio decreases. Third, SR’s gain diminishes as the distance increases, because the rendered

object becomes smaller in the view. Note that the scores for different distances are not directly

comparable. Fourth, the four video segments exhibit similar trends (figure not shown).

3.3.2.3 Study-All: How Accurate Is the Overall QoE Model?

Next, we validate the overall QoE model (Eq. 3.7). Similar to Study-SR (§3.3.2.2), we use our

optimized PU-GAN algorithm (details in §3.4.1) to perform upsampling and create video clips

at 4K resolution for four viewing distances: 1m, 2m, 3m, and 4m, which are determined from

a separate IRB-approved user study whose details are described in §3.3.2.1. To maintain a fixed

viewing distance d, we display the viewport at d meters in front of and facing the viewer. We

design a survey using Qualtrics [167] and publish it on Amazon Mechanical Turk (AMT) [9].

We study the impact of all the factors in Eq. 3.7 on the QoE. Table 3.3 lists them and their

impairment levels. They lead to a total of 756 combinations for each video segment. Since letting

subjects perform (7562 ) pairwise comparisons is infeasible, for each combination, we generate one

video clip by putting the impaired version and the high-quality “ground truth” version (4 × 1,

Ipatchi = Iframe
i = Istalli = 0, same viewing distance) side by side, in a random order. To generate

the impaired version, we randomly add perturbations to the patches’ quality levels to match the
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Figure 3.4: QoE prediction error using our model.

corresponding Ipatchi and Iframe
i values, and randomly inject stalls to match Istalli . We then ask

each subject to watch 100 randomly selected video clips from the 756 clips of a randomly selected

video segment. After watching each clip, the subject is asked to rate which side provides a better

QoE through 7 choices (“left looks {much better, better, slightly better, similar to, slightly worse,

worse, much worse} than right”) If the impaired version is {similar to, slightly worse, worse, much

worse} than the ground truth, we give the impaired version a score of {3,2,1,0}, respectively.

We have collected 934 subjects’ responses with a total number of 93,400 ratings for the above

survey published on AMT. For each viewing distance, we use the subjects’ ratings to calculate the

average score of each of the 756 impaired clips on a scale from 0 to 3, and use it as the QoE ground

truth. We then perform 10-fold cross-validation to validate our QoE model (Eq. 3.7, trained using

multi-variable linear regression) for each viewing distance. Figure 3.4 plots the CDF of the QoE

prediction errors at each viewing distance. The median prediction error for 1m, 2m, 3m, 4m

is 11.4%, 12.2%, 12.8%, and 12.9%, respectively. The (Person, Spearman) correlation coefficients

between the ground-truth QoE score and the predicted QoE score are also high: (0.89, 0.89) at

1m, (0.87, 0.88) at 2m, (0.87, 0.88) at 3m, and (0.85, 0.85) at 4m.
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δ
D: Long Dress; L: Loot; B:Band; H :Haggle

DBH ⇒ L LBH ⇒D DLB ⇒H DLH ⇒ B
1m 0.80 0.74 0.86 0.85

2m 0.76 0.71 0.87 0.87

3m 0.80 0.73 0.83 0.87

4m 0.78 0.71 0.76 0.80

Table 3.4: Spearman correlation coefficient betweenQoE ground truth and cross-video prediction.

XY Z ⇒W means using the model trained from videos X , Y , and Z to predict videoW ’s QoE.

δ
Long Dress + Loot + Band + Haggle
w1 w2 µp µf µs

1m 0.55 27.80 0.52 0.40 170.5

2m 0.42 39.83 1.05 0.91 149.8

3m 0.27 26.63 1.23 1.04 176.7

4m 0.16 17.17 0.47 0.06 304.1

Table 3.5: Parameters of the final model used in YuZu.

The above QoE models are trained from all four videos. Table 3.4 shows the Spearman corre-

lation coefficients between the ground-truth QoE and cross-video prediction results. We use the

data of three videos to train a QoE model and use it to predict the QoE for the remaining video.

The results indicate that the same QoE model and its parameters are applicable to volumetric

content of the same genre (portraits of people – a major application of volumetric streaming – in

our case). We also confirm that most parameters trained from different video segments are indeed

quite similar, in spite of the segments’ different point densities. When applied to other genres,

the model’s parameters may differ, as to be explored in our future work (the same happens to 2D

videos [247]). Table 3.5 lists our final model’s parameters trained using the entire dataset. The

model will be used by YuZu.
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3.4 System Design of YuZu

We now detail the system design of YuZu (Figure 3.1) that addresses the challenges we identified

in §2.1.1.

3.4.1 Accelerating SR Upsampling

To accelerate 3D upsampling, we take a principled approach by exploring three orthogonal di-

rections:

● Model Optimization. How to simplify the upsampling logic while retaining the inference

accuracy? (§3.4.1.1)

● Data Reduction. How to strategically feed less data to SR models with negligible impact on

QoE? (§3.4.2)

● Pre-processing and Post-processing Trimming. How to simplify the sophisticated pre- and

post-processing stages without incurring side effects on inferences? (§3.4.1.2)

Our optimizations can apply to all 3D SR models we have investigated [106, 229, 234, 249]

and they are video-agnostic. In §3.6, we demonstrate the optimization results for two SR models:

PU-GAN [106] and MPU [229].

3.4.1.1 SR Model Optimization

We take a “top-down” approach by first optimizing the model as a whole and then fine-tuning its

detailed structure. For most machine learning models (including 2D SR), after performing an in-

ference, the input is no longer needed and will be discarded. Our investigated 3D SR models [106,

229, 234, 249] make no exception. We instead make a fundamental observation regarding 3D
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Figure 3.5: Using a 3× SR model to realize 4× SR.

point clouds. Different from a 2D image, a point cloud is a set of unstructured points, which

means that point clouds can bemerged via a simple set union operation. We also note that 3D SR’s

output points refine and differ from the input. Based on this key insight, we propose a simple

yet effective optimization: YuZu merges the input low-density point cloud with the SR output in

order to improve the visual quality, or to reduce the computation overhead while maintaining the

same upsampling ratio. For example, as shown in Figure 3.5, to achieve 4× upsampling, instead

of using a 4× SR model, we can use a (computationally more efficient) 3× SR model and merge the

input with the output. Since SR exploits the overfitting nature of DNN, the spatial distributions

of upsampled points and the ground truth are expected to be highly similar. By leveraging the

input data and downgrading the SR ratio from 4× to 3×, we can achieve an acceleration of up to

∼35% without hurting the SR accuracy (Figure 3.9). Note that in offline training, the loss function

is computed after merging the input low-density point cloud with the SR output. This makes

the trained models aware of and adaptive to the merging process, improving the upsampling

accuracy compared to computing the loss function before that.

Next, we explore modifying 3D SR model’s DNN structure for inference acceleration. By pro-

filing the inference time of PU-GAN, we find that its three stages, feature extraction, feature ex-

pansion, and point set generation, take 78.3%, 19.3%, and 2.4% of execution time, respectively (4×

SR). Within the feature extraction stage that dominates the runtime overhead, most operations
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are convolutions. Wemake the same observation for other 3D SRmodels that we investigated [229,

234, 249].

To accelerate convolutions, we replace the original feature extraction, which (e.g., in the

case of PU-GAN) enhances the solution in PointNet++ [164] through dynamic graph convolu-

tion [190], with a recent proposal called spherical kernel function (SKF) [105]. SKF partitions

a 3D space into multiple volumetric bins and specifies a learnable parameter to convolve the

points in each bin. In contrast to continuous filter approaches (e.g., multilayer perceptron) used

in existing SR models, SKF is a discrete metric-based spherical convolutional kernel, and is thus

computationally attractive for dense point clouds. Moreover, it is applicable to all the 3D SRmod-

els we examined. We find that SKF brings no degradation to the upsampling accuracy (§3.6.3).

One reason may be that the kernel asymmetry of SKF facilitates learning fine geometric details

of point clouds [105].

In addition to utilizing SKF, we conduct layer-by-layer profiling [245, 42] to fine-tune the

SR model’s performance-accuracy tradeoff. Take PU-GAN as an example. We remove the last

two dense layers of feature extraction and several heavyweight convolution layers in the feature

expansion stage, as they make limited contributions to the upsampling accuracy. We also judi-

ciously remove a small number of expanded features to reduce the GPU memory footprint. For

other 3D SR models, their model tuning follows a similar approach.

3.4.1.2 Trimming Pre- and Post-Processing

Recall from §2.1.1 that to ensure a manageable model complexity, a 3D SR model divides a point

cloud into small patches as basic units for upsampling. We discover that as an important pre-

processing step, the patch generation process incurs a high overhead. For example, PU-GAN
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generates the patches by applying kNN to the seeds created by downsampling. Since the gen-

erated patches may overlap, after upsampling, PU-GAN needs to perform post-processing: it

applies the furthest point sampling [137] to remove duplicated points.

To mitigate the above overhead, YuZu adopts a simple patch generation method. It divides

the space into cubic cells, and assigns each non-empty cell (i.e., a cell that contains points) to

a patch. Compared to the default patch generation approaches used by PU-GAN and other 3D

SR frameworks [229, 106], our approach runs very fast; it also brings no overlap among patches,

thus eliminating the post-processing step (i.e., overlap removal). In addition, the patches now

have a simple geometry shape, so that they can be indexed, searched, and manipulated at run-

time. Meanwhile, We find that our patch generation approach does not sacrifice the upsampling

accuracy and may even improve the accuracy compared to vanilla PU-GAN and MPU (§3.6.3).

This is likely because cubic cells provide a more consistent structure for the patches, making

it easier to perform SR. We also investigate several other patch generation methods based on

Voronoi diagram [52] and 3D SIFT [187], but none outperforms our cubic-cell-based approach

from either the performance or the accuracy perspective.

3.4.2 Caching and Reusing SR Results

Videos usually exhibit similarities across frames. We find that volumetric videos make no excep-

tions. This indicates rich opportunities for caching and reusing SR results.

At a high level, YuZu reuses SR results based on the similarity between patches, which is

the basis of inter-frame encoding. Inter-frame similarity has been extensively studied and ex-

ploited in 2D videos. However, none of the 2D inter-frame encoding techniques can be directly
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applied to volumetric videos due to the fundamental difference between pixel-based 2D frames

and volumetric frames consisting of unstructured points. There are very few studies on 3D inter-

frame encoding [88, 132]; they are incompatible with YuZu’s patch-based upsampling, and incur

high complexity hindering line-rate decoding. Due to the above reasons, we design our own SR

caching/reusing algorithm. Our algorithm is agnostic of and orthogonal to a specific SR model.

YuZu reuses 3D SR results on a per-patch basis to match the patch-based upsampling proce-

dure. Recall from §3.4.1.2 that YuZu generates patches using 3D cubic cells. Let p(i, j) denote

patch j of frame i, and letN(i, j) denote the number of points in p(i, j). YuZu allows reusing the

SR result of p(i, j) for subsequent consecutive patches at the same location, i.e., p(i+1, j), p(i+2, j),

and so on. YuZu restricts reusing patches only at the same location due to two considerations.

First, we empirically observe that most patch similarities indeed occur at the same cell location;

this makes the benefits (in terms of reduced SR overhead) of reusing a patch belonging to a dif-

ferent cell marginal. Second, allowing reusing a patch at a different cell will drastically increase

the overhead of pre-computing the caching/reusing decisions.

We now describe YuZu’s SR reuse algorithm. YuZu first determines offline the similarity

of two patches. For each patch pair (p(i, j), p(i + 1, j)), YuZu computes a Weighted Complete

Bipartite Graph [12] B ∶ p(i, j) → p(i + 1, j), which we find to be suitable for dealing with

unstructured points. In the bipartite graph, there is a directed edge from every point in p(i, j)

to every point in p(i + 1, j), and the weight of the edge is their Euclidean distance. We then

calculate the minimum-weight matching (MWM) [205] for the graph, i.e., finding N(i, j) edges

such that (1) these edges share no common vertices (points), and (2) the sum of their weights

is minimized. Intuitively, the MWM identifies a transformation from p(i, j) to p(i + 1, j) with

a minimum moving distance for the points. The Hungarian algorithm [12] that computes the
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MWM has a complexity of O(N4) where N = max{N(i, j),N(i + 1, j)}. We instead employ a

faster O(N2) approximation algorithm that is found to work well in practice.
‡

We call every edge in theMWMa point motion vector (PMV). A PMV differs from a 2D video’s

motion vector, which represents a macroblock in a frame based on the position of the same or a

similarmacroblock in another reference frame. Leveraging the PMVs, we determine that p(i+1, j)

and p(i, j) are similar if three criteria are satisfied. (1) N(i, j) and N(i + 1, j) differ by no more

than ηn%; (2) the average length of all the PMVs is smaller than ηa; (3) the top 90-percentile of

the shortest PMV is smaller than ηv. These three criteria dictate that p(i, j) and p(i + 1, j) have

a similar number of points, and the points’ collective motions are small. Figure 3.6 shows how

ηa impacts EMD and the patch reuse ratio (% of patches that can reuse a previous SR result). As

shown, increasing ηa increases the reuse ratio, but meanwhile decreases the accuracy. According

to Figure 3.6, we set ηa to 0.01m to balance the performance and accuracy. Using similar methods,

we empirically set ηn=10 and ηv=0.01m.

‡
The approximation algorithm sorts all the edges by their weights in ascending order. It then adds the edges to

the MWM in that order and skips edges that share points with an existing edge in the matching, until every point

in p(i, j) or every point in p(i + 1, j) is in the MWM.
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Next, we consider how to reuse an SR result across multiple patches belonging to consecutive

frames. We define simj(i1, i2) ∈ {0,1} to be 1 if and only if p(i1, j) and p(i2, j) are similar, i.e.,

satisfying the above three criteria where i2 > i1. Figure 3.7 shows an example of 6 consecutive

patches at location j where ∀1 ≤ x < y ≤ 6 ∶ simj(x, y) = 0 except that simj(1,2), simj(2,3),

simj(2,4), and simj(2,6) are 1. YuZu allows a patch’s SR result to be reused across consecutive

patches if they are all similar to the first patch. For example, Patches 3 and 4 can reuse Patch 2’s

SR result. However, YuZu does not let Patch 6 reuse Patch 2 because simj(2,5) = 0. We make this

design decision for two reasons. First, we observe that non-consecutive patches are unlikely to be

similar in real volumetric videos. Second, supporting non-consecutive reuse requires computing

simj(x, y)∀x < y, making offline video processing slow.

We develop an algorithm that minimizes the number of patches to be upsampled, to boost

the online SR performance. For example, in Figure 3.7, the minimum number of patches to be

upsampled is 4: Patches 1, 2, 5, and 6. YuZu efficiently and optimally solves this through dynamic

programming (DP). Given n patches p(1, j), ..., p(n, j) and their simj information, let u(i, j) be

the minimum number of patches that need to be upsampled in {p(i, j), ..., p(n, j)} if we decide

to upsample p(i, j). Then u(i, j) can be derived through DP as:

u(i, j) =min{u(i + 1, j), min
i<k≤n∶∀i<t≤k∶simj(i,t)=1

{u(k + 1, j)}} + 1 (3.8)

The RHS of Eq. 3.8 examines each patch following p(i, j) and updates u(i, j) if stopping reusing

p(i, j) at p(k + 1, j) yields a better u(i, j). The search continues until hitting a patch that is not

similar to p(i, j). Eq. 3.8 can be solved backwards starting from u(n + 1, j) = 0. The solution is

u(1, j).
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Since YuZu streams VoD volumetric content, all the above logic (calculating MWM, simj , and

DP) is performed offline for each patch location j. Thus, there is no runtime overhead. The SR

reuse decisions are sent to the client as meta data, which is only 0.5KB per frame for our testing

video in §2.1.1.

3.4.3 Network/Compute Resource Adaptation

YuZu adapts to not only the fluctuating network condition (similar to the job of traditional bitrate

adaptation algorithms [128, 243, 248]), but also the available compute resource, due to the high

computation overhead of 3D SR. More importantly, these two dimensions incur a tradeoff: given

a fixed playback deadline, should YuZu download high-resolution content, or download lower-

resolution content and spend time upsampling it? Fortunately, our QoE model (§3.3.1) dictates

how to quantitatively balance this tradeoff.

We first formulate an online network/compute adaptation problem. The video is divided into

n chunks each consisting of f frames. To achieve fine-grained adaptation, each chunk is further

spatially segmented into b blocks (e.g., b=53), which are the atomic scheduling units in YuZu’s

adaptation algorithm. Each block consists of multiple patches (recall from §3.4.1.2 that each patch

occupies a cubic cell). At runtime, YuZu considers all the blocks belonging to a finite horizon of

the nextw chunks, and searches for their quality and SR ratio assignments that maximize the QoE

defined in Eq. 3.7. This formulation extends the model predictive control (MPC) scheme [248]

that proves to be effective for traditional 2D video streaming. The solution space is O(8wb) (the

8 possible assignments are listed in Table 3.2).
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We consider how to efficiently solve the above discrete optimization problem. An exhaustive

search is clearly infeasible. Due to the large solution space, even the memorization approach

(FastMPC [248]) is not practical. Another possibility is a learning-based approach such as Pen-

sieve [128]. However, it requires offline training and may incur a non-trivial inference overhead.

Moreover, a recent work [243] indicates that reinforcement learning based bitrate adaptation

solutions do not necessarily outperform simple buffer-based approaches [81].

To overcome the above challenges, we develop a lightweight approximation algorithm. It ex-

ecutes in two stages: first determine the quality and SR ratios of to-be-downloaded chunks, and

then fine-tune the SR ratios before upsampling. Specifically, in the first stage, before downloading

each chunk, YuZu performs a coarse-grained search by assuming that all the blocks in each chunk

have the same quality/SR-ratio assignment. The rationale is that, at this moment, the playback

deadline is still far away (compared to Stage 2), and thus the network/computation-load uncer-

tainty diminishes the benefits brought by a block-level, fine-grained search. Meanwhile, this

reduces the solution space from O(8wb) to O(8w). Specifically, we (1) start with a quasi-optimal

solution obtained from an even coarser-grained search at the granularity of every two consecu-

tive chunks, and (2) perform pruning by bounding [19]. After the above two optimizations, for

a practical w (e.g., w=10), the search time (for maximizing the QoE in Eq. 3.7) becomes negligi-

ble compared to the downloading and upsampling time. To estimate Istalli in Eq. 3.7, at runtime,

YuZu continuously estimates (1) the network bandwidth using the method in [73] and (2) the

local processing time of a frame using EWMA-based estimation.

The second stage takes place before upsampling each frame. At this stage, the playback dead-

line gets closer and thus a block-level, fine-grained searchwould be beneficial. To reduce the search

complexity, YuZu employs Simulated Annealing (SA) [94] – a probabilistic, greedy approach that
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approximates the global optimum. Our algorithm begins with setting all the blocks’ SR ratios to

the lowest (no SR). For each block, the algorithm tries to increase its SR ratio by one level. If the

resulting QoE of the finite horizon increases, this change is always accepted; otherwise, we may

still accept this change with a probability of exp(−∆
t ), where ∆ is the decrease of the QoE and

t is the current number of iterations, to avoid a potential local maximum. To speed up the SA

algorithm, we reduce the finite horizon to two frames: the previous frame and the current (to be

upsampled) frame – we empirically find that conducting frequent adaptations with a short hori-

zon at a per-frame basis outperforms infrequent adaptations with a long horizon at a per-chunk

basis in terms of the QoE.

3.4.4 Coloring SR Results

As described in §2.1.1, none of the 3D SRmodels we investigated performs colorization. There are

two high-level approaches for colorization. One is augmenting the SR models by adding the color

component. Thismay yield good colorization results, but at the cost of significantly increasing the

SR workload. Given this concern, YuZu takes a much more lightweight approach: approximating

each upsampled point’s color using the color of the nearest point in the low-density point cloud

(i.e., the input to the SR model).

In particular, YuZu employs two mechanisms to speed up the nearest point search. First, the

search is performed on an octree [207], which recursively divides a point cloud (as the root node)

into eight octants, each associated with a child node. The levels of detail of the point cloud are

controlled by the height of the tree. Performing nearest point search on an octree has a low

complexity of O(logN) where N is the number of nodes in the tree.
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Second, YuZu caches and reuses the results of previously searched points. The cache is in-

dexed by a point’s discretized coordinates, and the cached value is the color looked up from the

octree. When coloring an upsampled point, YuZu first performs cache lookup in O(1); upon a

hit, the cached color will be directly used as the color of the point; otherwise, YuZu performs a

full octree search and adds the search result to the cache. The discretization granularity incurs a

tradeoff between colorization performance and quality. We empirically observe that a discretiza-

tion granularity of 1cm
3
can yield good visual quality under typical viewing distances (≥ 1m).

We also notice opportunities for further improving the colorization quality. For example, the

nearest point approach can be generalized into interpolating the nearest k points’ colors; it can

also be used in conjunctionwith DNN-based colorization, whichmay bemore suitable for patches

with complex, heterogeneous colors. Nevertheless, these enhancements inevitably increase the

runtime overhead. We will explore them in future work.

3.5 Implementation

We integrate all the components in §3.4 into YuZu, a holistic system as shown in Figure 3.1. Our

implementation consists of 10,848 lines of code (LoC), with 8,326 LoC for the client.

For offline SR model training, we modify the source code of PU-GAN [162] and MPU [138]

using TensorFlow 1.14 [206] and custom TensorFlow operators from SPH3D-GCN [198]. Our

pre-trained models are saved in the ProtoBuf format [161] that is language- and platform-neutral,

facilitating future reuse. For online streaming, we implement the client player on Linux in C++.

We use the Draco Library [46] for encoding and decoding the point cloud data. We employ

Bazel [22] to compile the TensorFlow 1.14 C/C++ library and use the compiled library to load
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and execute the SR models. The client pipelines content fetching (network-bound), point cloud

decoding& patch generation (CPU-bound), 3D SR (GPU-bound), and colorization (CPU-bound) of

different frames for better performance. The server is also built in C++, with a custom DASH-like

protocol over TCP for client-server communication.

3.6 Evaluation

3.6.1 Experimental Setup

Volumetric Videos. We use four point-cloud-based volumetric videos throughout our evalu-

ations. (1) Our own video. We capture a volumetric video by ourselves using 3 synchronized

depth cameras. It has 3,622 frames (2 min) each consisting of ∼100K points. We refer to this video

as Lab. We have used it to motivate YuZu in §2.1.1. (2) The Long Dress (Dress) and Loot videos

(§3.3.2). They have 300 frames (10 sec) each consisting of ∼100K points. Since they are short,

we loop them (with cold caches) 10 times in our evaluations. (3) The Haggle video (§3.3.2). It

has 7,800 frames (4’20”) each consisting of ∼100K points. For all four videos, the eight possible

resolution/SR-ratio assignments are listed in Table 3.2. For each video, we train their SR models

separately. All the videos are at 30 FPS, encoded by Draco [46]. Unless otherwise mentioned, the

results reported in the remainder of this section are generated using all four videos. The average

encoded bitrate of Lab, Dress, Loot, and Haggle (4×1) are 96, 108, 118, and 118 Mbps, respectively.

3D SR Models. We apply our developed model acceleration techniques to two recently pro-

posed 3D SR models: PU-GAN [106] and MPU [229]. The two models usually yield qualitatively

similar results, so we show the results of PU-GAN by default. For certain SR-specific experiments
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(e.g., SR acceleration), we show both models’ results. The models are trained on a per-video basis.

For each video, the total size of all its models (×2, ×3, and ×4) is around 1.25 MB.

Metrics and Roadmap. We thoroughly evaluate YuZu in terms of performance, QoE, and

resource utilization. §3.6.2 evaluates the QoE improvement brought by our 3D SR optimizations

using both subjective (i.e., real-user ratings) and objective (e.g., PSNR [76]) metrics. §3.6.3 focuses

on the performance gain of our 3D SR optimizations, from the perspectives of resource usage,

inference time, and upsampling accuracy. §3.6.4 and §3.6.5 evaluate the end-to-end performance

(e.g., QoE and data usage) of YuZu. §3.6.6 provides additional micro benchmarks.

Network Conditions. We consider the following network conditions that are readily avail-

able in today’s wired and wireless networks. (1)Wired network with stable bandwidth (e.g., 50, 75,

and 100 Mbps) and ∼10ms RTT. (2) Fluctuating bandwidth captured from real LTE networks. We

collect 12 bandwidth traces from a major LTE carrier in multiple U.S. states at diverse locations

(campus, malls, streets, etc.). Across the traces, their average bandwidth varies from 33.7 to 176.5

Mbps, and the standard deviation ranges from 13.5 to 26.8 Mbps. We use tc [115] to replay these

traces (with a 50ms base RTT typically observed in LTE [90]). (3) We also conduct live LTE exper-

iments at 9 diverse locations in a U.S. city where the average bandwidth varies from 41.1 to 52.4

Mbps and the standard deviation is between 16.6 and 20.7 Mbps.

Devices. We use a commodity machine with an Intel Core i7-9800X CPU @ 3.80GHz and

32GB memory as the YuZu server. We use three client hosts: (1) a desktop with an Intel Core

i9-10900X CPU @ 3.70GHz, an NVIDIA GeForce RTX 2080Ti GPU, and 32GB memory (the de-

fault client used in our evaluations); (2) a desktop with the same CPU, an NVIDIA GeForce GTX
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Figure 3.8: PSNR of YuZu (left) and vanilla PU-GAN (right).

1660Ti GPU, and 32GBmemory; (3) an NVIDIA Jetson TX2 embedded system boardwith a Pascal-

architecture GPU of 256 CUDA Cores, 8GB memory, and a quad-core CPU. They represent a

typical high-end PC, a medium-class PC, and a mobile device, respectively.

User Motion Traces. We collect 32 users’ 6DoF motion traces when watching the four

videos, and replay them in some experiments. The details about howwe collect the motion traces

can be found in §3.3.2.1.

3.6.2 SR Quality

Subjective Ratings. Recall that in our user studies, we ask our participants to rate the SR results

generated by our optimized SR scheme (§3.4.1). Figure 3.3 shows that SR brings a significant boost

to the user-perceived QoE. For example, at 1m, compared to 1×1, the user-rated QoE increases by

37%, 75%, and 150% for 1×2, 1×3, and 1×4, respectively; 2×2 improves the QoE by 178% compared

to 2×1 (§3.3.2).

ObjectiveMetric. Wealso examine how SR improves PSNR [76], an objectivemetric of image

quality. The methodology is as follows. We replay the 32 users’ 6DoF motion traces of watching

the videos under different SR settings, and save the rendered viewports as images {ISR}. We then
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repeat the above process using the original videos (4×1), and capture the viewport images {I4×1}.

We compute the PSNR values by comparing each image in {ISR}with its corresponding image in

{I4×1}. Figure 3.8 (left) shows the PSNR values for 1×1, 1×2, 1×3, 2×2, 1×4, and 1×4 with reusing

SR results (denoted as “1×4D”) across all the captured viewports. We notice a significant increase

of PSNR from 1×1 to 1×2. The PSNR also increases marginally from 1×2 to 1×4. Meanwhile,

the PSNR change between 1×4 and 1×4D is negligible, indicating that caching and reusing SR

results brings little impact on the perceived video quality (but drastic performance gain as shown

in §3.6.3). The results of Lab are similar. Note that a PSNR value over 30 typically indicates good

visual quality [42, 208]. Figure 3.8 (right) shows the PSNR values for the unmodified PU-GAN

model. The qualitatively similar results between the left and right plots of Figure 3.8 indicate that

our SR acceleration modifications sacrifice little visual quality. Note the above results include the

colorization step, which is described in §3.4.4 and separately evaluated in §3.6.6.

Comparing Figure 3.3 and Figure 3.8, we notice disparities between users’ QoE ratings and

PSNR values. This indicates that image qualities of rendered 2D content do not directly reflect

the perceived QoE of volumetric content. This is a key reason for developing the QoE model for

volumetric videos.

3.6.3 SR Performance Breakdown

We now take a closer look at the effectiveness of each of our proposed methods for accelerating

SR. As listed in Table 3.6,M1 denotes the vanilla 3D SR model as the comparison baseline;M2 to

M6 are our proposed SR acceleration methods in §3.4.1 and §3.4.2. They are presented in a cumu-

lative fashion, i.e.,Mi includes every feature ofMi−1 plus some new feature. The experiments are
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M1 The vanilla 3D SR model (PU-GAN and MPU)

M2 M1 and optimizing patch generation

M3 M2 and layer profiling & pruning

M4 M3 and applying the spherical kernal function (SKF)

M5 M4 and merging SR input with SR output

M6 M5 and caching/reusing SR results

Table 3.6: SR acceleration methods (cumulative).

conducted using two 3D SR models (PU-GAN [106] and MPU [229]), 100Mbps wired network, 4×

SR, with network/compute resource adaptation (§3.4.3) disabled.

Figures 3.9 and 3.10 show the results of PU-GAN and MPU on the PC (2080Ti) and Jetson TX2

board, respectively. On the Jetson board, due to its low compute power (and mobile devices’ small

screen size), we reduce the original video’s resolution from 100K to 20K points per frame (i.e., the

SR is from 5K to 20K points per frame). We consider four metrics: (1) maximum GPU memory

usage (on Jetson TX2 we measure the system memory shared by GPU and CPU), (2) average

upsampling speed (in FPS), (3) inference accuracy measured in EMD between each upsampled

frame and the ground truth (4×1), and (4) visual consistency measured in EMD between each

consecutive pair of upsampled frames.

As shown, on 2080Ti, for PU-GAN (MPU), compared to M1, M6 reduces the GPU memory

usage by 87% (90%), accelerates the upsampling by 307× (542×), improves the average upsampling

accuracy by 24% (14%), and slightly improves the consistency. Also, each optimization (M2 toM6)

individually improves the upsampling speed and possibly other metric(s). The Jetson setup shows

a similar trend. The two models (PU-GAN and MPU) we studied exhibit similar performance

gains as we progressively apply our optimizations, except that MPU is less sensitive toM5. This

is because of the network structure difference between PU-GAN and MPU. Note that we do not
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Figure 3.9: Memory usage, upsampling FPS, upsampling accuracy, and visual consistency of M1

toM6 (2080Ti desktop).
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Figure 3.10: Memory usage, upsampling FPS, upsampling accuracy, and visual consistency ofM1

toM6 (Jetson TX2 board).

apply M3 to MPU because our layer-by-layer profiling (§3.4.1.1) reveals there is no layer that only

makes a marginal contribution to the overall upsampling accuracy in the MPU model.

Latency Breakdown. Figure 3.11 shows the latency breakdown of processing an average

frame using PU-GAN (Lab video, wired 100Mbps, 2080Ti desktop) under two settings: 2×2 and

1×4. As shown, SR remains the most time-consuming component. The breakdown for MPU is

similar. The above results indicate the importance of SR acceleration.

3.6.4 Diverse Network Conditions

We evaluate the QoE of YuZu under different network conditions, using the four videos and the

associated motion traces.

Stable Bandwidth. We first consider two stable bandwidth: 50Mbps and 75Mbps. Under

each bandwidth profile, we run the full-fledged YuZu (“Full”) and six statically configured YuZu
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Figure 3.11: Frame processing time breakdown. D&P: decoding and patch generation; SR: up-

sampling; Color: colorization, M&R: merging and rendering.

instances: 4×1, 2×2, and 1×4 with and without SR result reusing. The QoE results are shown

in Figure 3.12. We make several observations. First, when the bandwidth is low (50Mbps), 4×1

(without SR) gives the lowest (and even negative) QoE. This is because the limited bandwidth

leads to high network-incurred stall when fetching high-resolution content; SR can effectively

improve the QoE by using computation to compensate for the low bandwidth. Second, when the

bandwidth increases to 75Mbps, 1×4 gives the lowest QoE due to the distortion and computation-

incurred stall due to the high SR ratio. Instead, when the bandwidth is sufficient, the player

should fetch the content with a higher quality (e.g., 4×1D). Third, caching and reusing (C&R)

the SR results improves the QoE when either the bandwidth is low (e.g., 4×1 at 50Mbps), or the

SR ratio is high (e.g., 1×4). Under these two scenarios, C&R reduces the network and compute

resource usage, respectively. The saved resources can be used to improve the content quality for

other frames with more heterogeneity.

Figure 3.13 compares the (normalized) data usage, which is defined as the total downloaded

bytes including the SR models and meta data. Compared to 4×1, applying C&R reduces the data

usage by 40.5%. Also, increasing the SR ratio reduces the data usage, e.g., 1×4D consumes only

18.3% of the data compared to 4×1. The full-fledged YuZu with adaptation gives the overall best
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QoE (Figure 3.12) and low data usage (Figure 3.13) by balancing the compute and network re-

source consumption. Compared to 4×1, full YuZu reduces the data usage by 52.3% (50Mbps) and

41.9% (75Mbps) while boosting the QoE by 214% (50Mbps) and 78.3% (75Mbps).

Fluctuating Bandwidth. We repeat the above experiment over fluctuating bandwidth emu-

lated using our collected LTE traces (§3.6.1). The results are shown in Figure 3.14, which considers

both the data usage (x-axis) and the QoE (y-axis). 4×1 yields the highest data usage; further ap-

plying C&R (4×1D) not only reduces the data usage by 40.5%, but also increases the QoE by 61.8%

due to reduced stall. The full YuZu further improves the QoE by 21.0% and reduces the average

data usage by 8.2%. This is achieved through strategically fetching lower-quality blocks and using

higher SR ratios. In addition, the full YuZu improves the QoE by 10.4% to 93.7%, compared to 1×4

and 2×2 with and without C&R.

Live LTE. We conduct live LTE experiments at 9 locations in a major U.S. city. As shown in

Figure 3.15, the results are largely aligned with those in Figure 3.14, except for the lower QoE of

4×1. This is because of the lower bandwidth of live LTE throughout the test locations compared
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Figure 3.16: YuZu over ViVo.

to the LTE traces used in Figure 3.14. Compared to 4×1, the full YuZu improves the QoE by 210.3%

and reduces the data usage by 50.8%.

3.6.5 YuZu vs. Existing Approaches

YuZu vs. Viewport-Adaptive Streaming. We compare YuZu with ViVo [68], a recently pro-

posed viewport-adaptive approach. Leveraging 6DoF motion prediction, ViVo determines what

content to fetch and which quality to fetch based on predicted viewport and viewing distance.

Similar viewport-adaptive approaches are used in the other systems [102, 156].

We develop a custom replication of ViVo on Linux in 7,101 LoC with the same set of con-

figuration parameters. Figure 3.16 shows the improvement brought by YuZu compared to ViVo

in terms of the overall QoE and its three components (Qi, I
patch
i , and Iframe

i , see Eq. 3.7), using

all four videos and the users’ motion traces.
§
Note that both systems exhibit negligible stall so

Istalli is not plotted. As shown, YuZu brings significant improvement on the average QoE (by

100.6% to 174.9%) and on each QoE component. YuZu outperforms ViVo due to three reasons.

§
ViVo does not have the notion of patch; instead its basic adaptation unit is a cubic cell. To ensure fair compar-

isons, we further divide ViVo’s cells into virtual “patches” with the same size as YuZu and assign to them its parent

cell’s corresponding quality level when calculating Ipatchi .
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First, ViVo does not support SR, which YuZu leverages to boost the QoE. Second, ViVo’s viewport

adaptation approach becomes less effective when the whole scene appears inside the viewport

(which oftentimes appears in our motion traces). SR does not suffer from this limitation. Third,

to realize viewport adaptive streaming, ViVo has to perform 6DoF motion prediction, which is

error-prone. In contrast, YuZu does not require motion prediction, and therefore exhibits more

stable performance in particular when the motion is fast. Note that viewport-adaptation and SR

are orthogonal approaches and can be jointly applied.

YuZu vs. Simple SR Adaptation. To demonstrate the efficacy of our network/compute re-

source adaptation design (§3.4.3), we compare it with a simple adaptation approach that differs

in two aspects. First, unlike YuZu’s two-stage adaptation, it only performs single-stage adapta-

tion before downloading each chunk. Second, it employs a deterministic greedy algorithm that

increases the SR ratio of each block within the finite horizon (in chronological order) until the

QoE does not further improve. In contrast, YuZu employs a probabilistic greedy approach that

is less vulnerable to a local maximum. We evaluate the simple adaptation algorithm using our

LTE traces (§3.6.4) and plot its result as “Simple” in Figure 3.14. Compared to it, the full YuZu

increases the average QoE by 11.4% and reduces the average data usage by 7.9%.

3.6.6 Micro Benchmarks and Resource Usage

We conduct experiments to show the following. (1) The colorization approach ofYuZu can indeed

produce good visual quality (with a PSNR >38). (2) YuZu can work adaptively with different

hardware (we compare the results on 2080Ti and 1660Ti; we also ported YuZu to an embedded

system, see Figure 3.10). (3) The main memory (∼5GB) and GPU memory (∼2GB) usage of YuZu
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is acceptable. (4) The (one-time) offline training time is non-trivial but acceptable, and the sizes

of SR models are negligible (<0.2% of the video size). The details are presented below. Note that

the following micro benchmark results are generated using the PU-GAN model. The results for

the MPU model are qualitatively similar.

Quality of Colorization. To evaluate the quality of the colorization step alone, we employ

the approach in §3.6.2 where we use PSNR to objectively assess the image quality of rendered

viewports. Specifically, we calculate the PSNR values by comparing {INP−Color
4×1 } (defined below)

with {I4×1} (defined in §3.6.2), using the Dress and Loot videos and the real users’ motion traces

(§3.3.2.1). The viewport images of {INP−Color
4×1 } are obtained as follows: (1) remove the color

from the original (4×1) video; (2) apply the above nearest-point (NP) colorization method to the

video generated in Step (1), using the 1×1 video as the low-resolution point cloud stream from

which the colors are picked; (3) replay the same motion traces to render the viewport images

for the video colored in Step (2). The PSNR values of {INP−Color
4×1 } are 38.09±2.44 and 44.15±2.59

for Dress and Loot, respectively, indicating the high fidelity of colors produced by our method.

The above numbers are much higher than the PSNR values in Figure 3.8 (which also includes the

colorization step) due to the following reason. PSNR and many other 2D image metrics such as

SSIM [230] perform a pixel-wise comparison between two images. In the case of Figure 3.8, a

tiny position shift of a 3D point may result in an also tiny position shift of its projected 2D pixel,

leading to a pixel mismatch and thus a decreased PSNR score. This problem does not appear in

the colorization step.

Impact of Computation-aware Adaptation. 3D SR demands considerable compute re-

sources. Figure 3.17 demonstrates the impact of hardware and computation-aware adaptation,

using the Lab video. Figure 3.17 considers two GPUs: a more powerful 2080Ti GPU and a less
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Figure 3.17: Impact of hardware and computation-aware adaptation.

powerful 1060Ti GPU. It also considers two adaptation schemes: the full network/compute adap-

tation scheme described in §3.4.3 (“Full”) and a computation-agnostic scheme that only adapts

according to the network bandwidth (“Basic”). The Basic scheme works as follows. (1) It assumes

that SR takes no time to complete; (2) it disables 2×2 and 1×4 (otherwise the QoE will degrade

too much due to excessive stalls). Under the above setup, each bandwidth setting in Figure 3.17

has four schemes: {2080Ti, 1660Ti} × {Full, Basic}. As shown, when there is sufficient bandwidth,

the QoE differences among the four schemes are small, because the player is more likely to fetch

3×1 and 4×1 blocks that do not require SR. However, when the bandwidth becomes low, the dif-

ference between 2080Ti and 1060Ti becomes noticeable, and the gap between Full and Basic is

even larger. The Basic scheme yields much lower QoE scores because it ignores SR’s computation

overhead, leading to excessive stalls.

Memory Usage. We measure the client-side memory usage when streaming the Lab video

over 50Mbps bandwidth (which leads to extensive invocations of SR). On the 2080Ti (1660Ti)

desktop, the peak main memory usage is 5.03GB (5.33 GB); the peak GPU memory usage is 1.97

GB (1.83 GB). YuZu’s GPU memory usage on 2080Ti is higher than the numbers reported in

Figure 3.9 because YuZu loads multiple SR models at runtime. When the available bandwidth is

higher, the CPU/GPU memory will reduce because of fewer SR operations.
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Offline Training Time and Model Size. YuZu incurs non-trivial model training time. For

example, on the 2080Ti desktop, it takes about 88 minutes to train the 1×2, 1×3, and 1×4 models

altogether for the Lab video consisting of 3,622 frames. However, note that (1) this is a one-time

overhead; (2) we did not conduct any performance optimization for training; for a large-scale

deployment, the training overhead could potentially be reduced by training one generic model

and fine-tuning it for each specific video [247] (left as futurework). The SRmodel size is negligible

(< 0.2%) compared to the video size.

3.7 Summary

In this chapter, we conduct an in-depth investigation on applying 3D SR to streaming volumet-

ric content. Our proposed QoE model and the YuZu system take a first and important step to-

wardmaking SR-enhanced volumetric video streaming principled, practical, and affordable. YuZu

demonstrates how a series of novel optimizations, which fill a 500× performance gap, as well as

judicious network/compute resource adaptation can help significantly improve the QoE for vol-

umetric video streaming.
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Chapter 4

Habitus: Boosting Mobile Immersive Content Delivery

through Full-body Pose Tracking and Multipath

Networking

4.1 Introduction

Now, let us extend our focus from volumetric videos to broader immersive content such as vir-

tual/mixed reality. As discussed in §2.2, the huge network resource requirement of immersive

content poses a major challenge for mobile immersive content delivery systems, which use wire-

less radios instead of HDMI/USB cables [219, 218] for content delivery. Though recent advance-

ment of millimeter wave (mmWave) radio technologies make it feasible to transmit immersive

content at a multi-Gbps data rate, our case study in §2.2.1 shows that simply using mmWave

for immersive content delivery may not help improve QoE, and all existing solutions, includ-

ing improving the PHY layer, enhancing line-of-sight (LoS), and using specialized equipment, have

limitations.

69



In this chapter, we investigate two complementary, under-explored dimensions to improve

the performance ofmmWave-based immersive content delivery systems: (1) full-body-pose guided

mmWave throughput prediction and (2) joint use of mmWave and omnidirectional radios. We then

integrate them into a holistic middleware framework called Habitus. At a high level, Habitus

features a judicious cross-layer design that considers the interplay among viewers’ motion, wire-

less networks, and immersive applications. It creatively leverages features on cheap commodity

mobile devices (e.g., dual 802.11ac/ad radios and multi-lens cameras capable of producing stereo

images) for affordable high-quality immersive content delivery. Habitus is readily deployable

without requiring any change to the existing wireless protocol stack, hardware, or driver. It is

orthogonal to and can co-exist with the three categories of solutions described above. The key

challenges we face include: (1) the dynamics of viewers’ motion and mmWave channel incur

complex interplay, making accurate throughput prediction difficult; (2) diverse locations and hu-

man viewers add more complexity in developing a robust prediction model; even at the same

location, the environment may change (e.g., a moved chair or a walking spectator); (3) the het-

erogeneous characteristics of mmWave and omnidirectional radios make their duet difficult.

Full-body-pose Guided mmWave Throughput Prediction (§4.3). Over a mmWave link,

although the throughput fluctuations cannot be completely avoided, they can potentially be pre-

dicted to improve the quality-of-experience (QoE) of immersive applications. Habitus utilizes

not only the network information, but also viewers’ motion to predict mmWave performance.

The rationale is that by continuously tracking the 6-DoF motion, an immersive content deliv-

ery system can estimate the viewer’s future motion trajectory [166, 68, 241], which can then

be mapped to the future mmWave performance given the sensitivity of mmWave signal to the

physical environment. In particular, we make a new discovery that using the viewer’s full-body
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pose (how a person stands, sits, or moves as represented by a set of key points associated with

body parts/joints) as features can significantly improve the throughput prediction accuracy, due

to the spatial correlation among body parts during typical human motion [17]. Motivated by the

above, we develop a first-of-its-kind framework that predicts mmWave throughput by jointly

leveraging a headset’s 6-DoF motion, the viewer’s body pose, and network information, through

a unified machine learning model. The full-body pose can be captured by a commodity stereo

camera conveniently placed, e.g., next to the WiFi AP.

Reacting to Unseen Changes (§4.4). Using a pre-trained model to predict throughput suf-

fers from a key limitation: it cannot adapt to changes deviating from the training data. We sys-

tematically investigate how various types of changes in the immersive streaming context impact

the prediction accuracy of a pre-trained model. Based on the insights, we design three orthogonal

mechanisms for reacting to different types of unseen changes: (1) offline transfer learning handles

large changes such as switching to a new location/user; (2) online transfer learning updates the

model at runtime to tackle smaller changes such as new motion patterns and environmental per-

turbations; (3) we also leverage the stereo camera to proactively detect/respond to moving objects

(e.g., a passing person) that affect the mmWave performance.

Joint Use of mmWave and Omnidirectional Radios (§4.5). Multi-band radio access is a

common feature on both mobile devices and WiFi APs. For example, the Asus ROG Phone Se-

ries [176] support both 802.11ac and ad. Strategically combining them can boost the network per-

formance for metaverse. We design a lightweight yet effective multipath scheduler for immersive

content delivery over mmWave and omnidirectional radios (802.11ad and ac in our prototype).

It employs two core design ideas. First, it prioritizes the (low-bandwidth but stable) ac path to
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guarantee the basic user experience, and opportunistically leverages (high-bandwidth but fluc-

tuating) ad whenever possible. Second, it enhances the mmWave throughput prediction through

robust statistical trend analysis [39] to facilitate longer-term throughput forecast.

Implementation (§4.6). Instead of building a monolithic application, we develop the above

features as a generic, user-space middleware framework called Habitus. It offers simple inter-

faces and data-handling paradigms that are compatible with a wide range of existing immersive

applications. It also addresses practical system-level challenges, such as accurate throughput

measurement of the highly bursty traffic of immersive content delivery. Habitus consists of 3,541

lines of code (LoC). To demonstrate its efficacy, we develop two immersive apps using its API:

one is built from scratch in 5.2K LoC; the other is adapted from a state-of-the-art volumetric

streaming system [68] by only modifying 47 LoC.

Datasets (§4.3, §4.4) and Evaluation (§4.7). We thoroughly evaluate Habitus through real-

world data and deployment.

●We conduct IRB-approved data collection involving 10 representative motion patterns at 4 rep-

resentative indoor locations from 3 users. This results in a 21-hour dataset that was used to

evaluate Habitus’s prediction framework.

● We enhance the above dataset with both static and dynamic environmental changes in a re-

producible manner (e.g., using a robotic arm to programmatically inject NLoS, see our demo

video [43]), to evaluate Habitus’s reaction to changes.

● Using full-body poses reduces 802.11ad throughput prediction error by up to 29% (25%) in MAE

(RMSE), compared to using only 6-DoF head motions. This translates to an average QoE improve-

ment of 29% for volumetric content delivery.
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●Habitus effectively responds to unseen changes. The offline transfer learning reduces the model

training time by 36% to 55% compared to building the model from scratch when switching to a

new location or user. The online transfer learning can adapt to a new motion pattern or a typical

static environmental change in 32 secs and 15 secs, respectively. By proactively detecting and

responding to moving objects, Habitus reduces the volumetric streaming stall by 7%.

● Our multipath solution boosts the average volumetric video quality by 67%, reduces the stall

by 64%, and improves the QoE by 72%, compared to using 802.11ad alone. Compared to a recent

multipath solution for 802.11ac/ad [183], Habitus reduces the stall by 58% and boosts the quality

by 19%.

● We conduct another IRB-approved user trial where we collect 12 viewers’ subjective feed-

back when watching volumetric content. The average ratings for 802.11ad only (basic predic-

tion), 802.11ac+ad (no ad prediction), 802.11ad+ac (basic ad performance prediction), and the full

Habitus system (with multipath and full-fledged ad prediction) are 2.67, 2.75, 3.08, and 3.50, re-

spectively (in a 1–5 scale).

Habitus represents to our knowledge a first software framework aiming at optimizing the

upper-layer network protocol stack for immersive content delivery (and metaverse applications

in general). This paper makes three-fold contributions: the design of the Habitus framework; its

implementation, evaluation, and integration into two volumetric content delivery systems; and

the release of data [67] (802.11ac/ad performance correlated with full-body motion) and source

code [66].
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Figure 4.1: The system architecture of Habitus.

4.2 Habitus Overview

Habitus is a software framework enabling immersive content delivery applications to better inter-

act with heterogeneous off-the-shelf wireless networks. It offers two essential features: accurate

runtime mmWave throughput prediction andmultipath networking over mmWave (e.g., 802.11 ad)

and omnidirectional radio (e.g., 802.11 ac). We assume that the bottleneck is the last-mile radio

link(s). Figure 4.1 shows the workflow of Habitus. As the viewer is watching immersive con-

tent, Habitus collects various features in real-time and sends them to an edge node. The edge

employs a machine learning model to perform accurate mmWave throughput predictions. The

prediction results are then utilized by the application and Habitus’s multipath scheduler to deter-

mine the appropriate content quality level and how to distribute the content over diverse radio

links, respectively. Habitus works on top of the transport layer as a middleware. It is ready for

deployment without requiring any changes to the existing wireless protocol stack, hardware, or

drivers.
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Developing Habitus brings us several challenges: (1) How to accurately predict mmWave

throughput at runtime? Due to its sensitivity to blockage and mobility, mmWave throughput

is difficult to predict, especially under user mobility. (2) How to ensure the robustness of the

prediction models? A pre-trained model may not be able to handle various unseen changes

such as moving to a new location, switching to a different user, or even smaller environmental

perturbations. (3) How to make multipath scheduling efficient and intelligent? mmWave

and omnidirectional radios have their unique natures. How to strategically use these properties

to facilitate multipath scheduling is another critical problem.

Habitus tackles the above challenges with 3 core designs.

● Full-body-pose GuidedmmWave Throughput Prediction (§4.3). Habitus boosts mmWave

throughput prediction by exploiting the viewer’s full-body pose, along with the headset’s 6-DoF

motion and network information, as the features. It employs a cheap stereo camera with off-the-

shelf computer vision techniques to capture viewers’ poses. We systematically demonstrate the

benefit of leveraging body pose through a 21-hour dataset collected at 4 diverse locations.

● Reacting to Unseen Changes (§4.4). Habitus reacts to unseen changes in training data via

three orthogonal approaches: offline transfer learning for location/user changes, online trans-

fer learning for new motion patterns and small environmental changes, and proactively detect-

ing/responding to moving objects (e.g., a passing person) affecting mmWave performance.

● Joint Use of mmWave and Omnidirectional Radio (§4.5). Habitus employs the omnidirec-

tional radio that provides stable throughput as a basis. It then opportunistically takes advantage

of the fluctuating mmWave radio. It exposes simple, generic interfaces to a wide range of immer-

sive applications.
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4.3 mmWave Throughput Prediction Guided by Full-body-

pose

Habitus utilizes not only the network information, but also viewers’ motion as features to predict

mmWave throughput. It is based on our two observations. (1) The fast signal attenuation and

vulnerability to LoS blockages make mmWave throughput highly correlated with the headset’s

physical position and orientation [237, 147]. Both of them can be predicted from the viewer’s

historical 6-DoF motion trajectory [68]. (2) Various body parts exhibit spatial correlation [17]. It

provides opportunities to enhance the headset motion prediction, which can facilitate mmWave

throughput prediction.

4.3.1 Full-body Pose Estimation

4.3.1.1 Full-body Pose Representation and Retrieval

Typically, a full-body pose can be represented by a set of key points where each key point corre-

sponds to a joint/part of the human body. We customize the OpenPose [31] BODY_25 format –

a popular format used in the computer vision community – to represent the full-body pose. As

shown in Figure 4.2, we discard some key points (i.e., eyes, ears, toes, and heels) that have little

contribution to the full-body pose. We keep the other 15 key points to represent the viewer’s

full-body pose, covering the nose, neck, shoulders, elbows, wrists, hips, knees, and ankles.

Some commercial products (e.g., smart suit [177] and body-mounted sensors [220]) allow

tracking the full-body pose, but they are expensive and uncomfortable to wear. Habitus in-

stead employs a cheap and easy-to-deploy approach to capture/track the viewer’s full-body pose
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Used Discarded

0: Nose 15: Right Eye

1: Neck 16: Left Eye

2: Right Shoulder 17: Right Ear

3: Right Elbow 18: Left Ear

4: Right Wrist 19: Left Big Toe

5: Left Shoulder 20: Left Small Toe

6: Left Elbow 21: Left Heel

7: Left Wrist 22: Right Big Toe

8: Mid Hip 23: Right Small Toe

9: Right Hip 24: Right Heel

10: Right Knee

11: Right Ankle

12: Left Hip

13: Left Knee

14: Left Ankle

Figure 4.2: OpenPose BODY_25 Format.

through a stereo camera. It first applies a machine learning model [31, 11, 21, 170, 129, 28] to the

RGB frame to estimate the 2D key points of the full-body pose, each comprised of a 2D coordi-

nate and a confidence value w (0 ≤ w ≤ 1). Habitus then maps the 2D key points to 3D space

using the depth map [61] that is generated from stereo images, and keeps their confidence values

unchanged.

4.3.1.2 Estimating Missing Key Points

In some cases, for example, when some parts of the body are outside the stereo camera’s viewport,

we are not able to capture their key points. We observe from our dataset in §4.3.2 that for 86% of

time, the ML model can retrieve at least 10 (out of 15) key points. The 90-th percentile, mean, and

median duration of a key point’s missing time are 1s, 0.43s, and 0.07s, respectively. This indicates

that in most cases, a key point misses for a very short duration. We estimate a missing key point’s

3D coordinate on the fly using a combination two approaches: reusing its most recently captured
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3D coordinate (when the missing period is short), and linearly extrapolating its coordinate using

its historical trajectory (when the missing period is long). The detailed design and evaluation are

in the following.

To estimate a missing key point’s 3D coordinate on the fly, we consider two baseline ap-

proaches: simply reusing its most recently captured 3D coordinate (Method 1), and linearly ex-

trapolating its coordinate using its historical trajectory (Method 2 [99, 238, 41]). To assess them,

we select a subset of our dataset with no missing key point (as the ground truth, referred to as

Dg). From Dg, we create a dataset Da where key points are removed for k consecutive frames

where k is exercised from 1 to 60. We apply the above two approaches toDa, and find that when

the missing duration is short (long), Method 1 (Method 2) gives a lower average estimation error

(RMSE). This finding leads to our solution where we switch between the two baselines based on

the missing duration. The switching threshold is empirically set to 7 or 14 frames for 30 and 60

FPS respectively, based on the data.

To evaluate our solution, we construct another dataset Db from Dg. In Db, key points are

removed in such a way that their missing time follows the same distribution as that in our entire

dataset. Compared to using the two baselines alone, our solution reduces the average RMSE by

21% and 15%, respectively.

Recall from §4.3.1.1 that a key point contains a confidence value w. We gradually decay w as

a key point remains absent, because as the missing time t increases, its 3D coordinate estimation

becomes less reliable. We let w(t) = w0 ×max(0,1 − t
T ) where w0 is the most recently captured

confidence value of this key point andT is a threshold controlling the decay speed. We empirically

set T to 1 sec, i.e., the 90-th percentile missing time for a key point in our dataset. The confidence

value will be used in §4.3.3 as an input to the prediction model.
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Figure 4.3: Data collection locations (from left to right: Personal Office, Living Room, University
Office, and Meeting Room).

4.3.2 Data Collection

We perform a first-of-its-kind study on full-body-pose assisted throughput prediction in real-

world settings. We conduct an IRB-approved data collection involving 10 motion patterns at 4

indoor locations from 3 users, resulting in a 21-hour dataset consisting of both the network data

and viewers’ motion data. This unique dataset is used to evaluatemmWave throughput prediction

(§4.3.3), techniques for tackling unseen changes (§4.4), and the Habitus system (§4.7).

4 Indoor Locations. We investigate 4 representative indoor locations with diverse environ-

ments. As shown in Figure 4.3, the four data collection locations we select (Personal Office, Living

Room, University Office, Meeting Room) have diverse environments in terms of the layout, floor

materials, furniture types, and spatial openness, etc. Table 4.1 summarizes the moving area and

room space of the four locations. The moving area is the area for data collection. The room space

refers to the total space of the entire room. The data collection area of Personal Office covers al-

most the entire room. While Living Room also has a similarly simple setup, its data collection area

only covers one-third of the room and appears more open, as shown in the floor plan. University

Office is a large room with a complex layout. Meeting Room has a long table in the center of the

data collection area. The relative positions between the camera and theWiFi AP also differ across

the four locations.
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Location Moving Area (m2
) Room Space (m3

)

Personal Office 2.5×2.5 3.3×2.5×2.5
Living Room 3.0×2.7 6.6×5.4×2.5

University Office 4.0×2.0 9.0×7.0×3.0
Meeting Room 4.0×3.0 6.5×6.5×2.8

Table 4.1: The moving area and room space of the four locations.

3 Users. We recruit 3 users with different heights (1.6m, 1.7m, and 1.8m) and genders (1

female and 2 males) to collect data in all the four locations.

10 Motion Patterns. We consider 10 representative motion patterns when watching immer-

sive contents [68] and summarize them in Table 4.2. For each motion pattern, we repeat data

collection three times.

Dataset Overview. Our dataset consists of 12 {Location, User}-specific sub-datasets, each

having 30 (10 motion patterns×3 repeats) data traces. The duration of each data trace is 120 secs

and the time granularity of each data point is 1/60 secs. Our dataset consists of not only the net-

work information (throughput and signal strength of both 802.11ac and 802.11ad), but also users’

motion information (i.e., 6-DoF motion of users’ headsets and users’ full-body pose, see §4.3.1).

Across all data traces, the average 802.11ad throughput varies from 275 to 886 Mbps, with the

standard deviation ranging from 85 to 358 Mbps. Meanwhile, the average 802.11ac throughput

varies from 175 to 378 Mbps, with the standard deviation ranging from 26 to 86 Mbps. The high-

est throughput of 802.11ad only achieves 2.34× of 802.11ac due to the limitation of our hardware

setup.

Hardware Setup. We take Personal Office in Figure 4.3 as an example. For the edge, we set

up a desktop PCwith two network interfaces (NICs) at the corner of the room. It has an Intel Core

i9-10900X CPU @ 3.70GHz, an NVIDIA 2080Ti GPU, and 32GB memory. Each NIC is connected
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Patterns Description

S1

The user stands in the center of the room, turning

around in a clockwise direction.

S2

The user stands in the center of the room, turning

around in a counterclockwise direction.

S3 The user walks around in a clockwise direction.

S4

The user walks around in a counterclockwise

direction in a normal speed.

S5 The same as S4, but in a slow speed.

S6 The same as S4, but in a fast speed.

S7

A chair occupies the front place of the access point.

The user walks around in a counterclockwise direction.

S8

The same as S3, but the user does not change the

orientation of his/her head.

S9

The same as S4, but the user does not change the

orientation of his/her head.

S10

The user walks around following the walking trace

in S7, but there is no chair.

Table 4.2: User motion patterns.

to an access point by a 1-Gbps Ethernet cable, one [212] for 802.11ac and the other [144] for

802.11ad. The two
∗
APs reside on the floor side-by-side. A stereo camera [251] is installed on

the wall and connected to the PC via a USB 3.0 cable. It captures users’ motion as RGB-D videos

at up to 100 FPS. For the client device, users wear a headset [126] for collecting 6-DoF motion

of their heads. We mount a smartphone [176] that supports both 802.11ac/ad on the headset to

collect network information. We use the same hardware setup for all four locations.

Data Collection Methodology. On the client side, the smartphone establishes two TCP

connections with the edge over 802.11ac and 802.11ad, respectively. It performs bulk download

from the edge through both paths, and measures the throughput and signal strength (in terms of

RSSI). The headset keeps sending the 6-DoF to the smartphone by UDP over 802.11ac. Meanwhile,

on the edge side, the desktop PC keeps sending the most recent RGB-D frame ID captured by the

∗
Ideally one access point is able to handle both ac and ad. We use two access points due to the 1-Gbps speed

limitation of our Ethernet cables.
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stereo camera to the smartphone through UDP over 802.11ac for data synchronization purpose

(see next).

Data Synchronization and Post-processing. During data collection, the smartphone logs

all the information (generated by itself or received from the headset/edge) except the RGB-D

video that is recorded at the edge. Since all the devices are in close proximity, the UDP one-way

delay is negligible (≤ 2ms) so different pieces of data are properly synchronized. We use zed-

openpose [253] (which consumes the RGB-D video) to estimate the user’s body pose offline. The

pose is synchronized with other information through the RGB-D frame ID, which is recorded by

the client at runtime. For key point extraction, we set the input resolution to 320×240 and keep

it consistent in our implementation (§4.6).

4.3.3 Prediction Methodology and Evaluation

We first formulate our prediction task. Let xt denote the feature vector at time t, yt denote the

predicted throughput at time t, ∆t denote the time granularity, and M denote the prediction

model. Assuming that we perform prediction at time t0, we have

Yt0,m =M(Xt0,n) (4.1)

where

Xt0,n = [xt0−(n−1)×∆t, xt0−(n−2)×∆t, ..., xt0−1×∆t, xt0] (4.2)
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is the feature sequence within a history window (hw) n, and

Yt0,m =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[yt0+m×∆t] or

[yt0+1×∆t, yt0+2×∆t, ..., yt0+(m−1)×∆t, yt0+m×∆t]
(4.3)

can be either a single predicted value after a prediction window (pw) m or a predicted sequence

within the pw m where yt0+i×∆t(1 ≤ i ≤ m) corresponds to a future timestamp t0 + i ×∆t. The

hw (pw) in secs is computed as n ×∆t (m ×∆t).

Habitus uses the full-body pose by taking the coordinates and confidence values (§4.3.1) of its

key points as important features to the mmWave throughput prediction models. We investigate 5

different models (a traditional machine learning model and 4 deep learning models) from recent

studies on mmWave throughput prediction [142, 5]. We customize them to our prediction task

by tuning the model architecture and the parameters. We list them as follows.

(1) Gradient Boosting Decision Tree (GBDT) [142]. GBDT has been used for predicting

commercial 5G throughput [142]. It employs a weighted combination of weak learners that op-

timizes a differentiable loss function in functional space. Our GBDT model has 100 estimators,

bounded by a depth of size 3. It takes Xt0,1 as the input and predicts a single throughput value

Yt0,m.

(2) Fully-connected Neural Network (BP) and Recurrent Neural Network (RNN) [5].

Prior work [5] uses BP and RNN for 802.11ad throughput prediction in a restricted setting (mount-

ing the device on a guided rail with only 2-DoF). In contrast, we apply them to our setting where

the device exercises 6-DoF motion. BP8 is a fully-connected neural network with 3 hidden layers,

each with 40 neurons. It takes Xt0,8 as the input and predicts a single throughput value Yt0,1.
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RNN8 and RNN20 have the same network architecture, i.e., a recurrent neural network with 3

hidden layers, each with 8 or 20 neurons. They take Xt0,8 and Xt0,20 as the input, respectively,

and both predict a single throughput value Yt0,1.

(3) Sequence-to-sequence Learning (Seq2Seq) [202, 215, 37, 142]. Seq2Seq learning al-

lows inferring an output sequence with variable length from an input sequence. It has also been

applied to commercial 5G throughput prediction. Our Seq2Seq model has a single-layer LSTM

encoder-decoder architecture with 128 hidden units. It takes Xt0,n as the input and predicts fu-

ture throughput sequence Yt0,m where m = 2 × n. We get the relationship between n and m

from [241], which applies deep learning to predicting viewers’ head movement when watching

360° videos. We experimentally confirm that their configuration also works well in our setting.

We use our dataset (§4.3.2) to train/evaluate the above models {w/, w/o} the full-body pose

as extra features. We perform 10-fold cross-validation for each model on each {Location, User}’s

dataset, and quantify their prediction errors by mean absolute error (MAE) and root mean square

error (RMSE). For Seq2Seq, to fairly compare it with the other models, we only use the value yt0+pw

in its predicted sequence. We use three prediction windows (pw) of {0.5, 1, 2} secs.

Figure 4.4 shows the average MSE and RMSE for different models across all {Location, User}’s

datasets when pw=1 sec. The model trained with (without) full-body pose is denoted as Model

w/ Pose (Model) in Figure 4.4. We also normalize the prediction error by the average 802.11ad

throughput (493 Mbps) of our dataset. We have four observations here. (1) Seq2Seq w/ Pose

achieves the lowest prediction error: 31 (47) Mbps in MAE (RMSE). (2) Leveraging full-body pose

as extra features effectively reduces the prediction error for all the models. The reduction ranges
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Figure 4.4: Prediction error of different models {w/, w/o} full-body pose as extra features, pw = 1
sec.

from 5% (GBDT ) to 29% (RNN20) in MAE and 5% (GBDT ) to 25% (RNN20) in RMSE. This quanti-

tatively confirms that leveraging spatial correlation among body parts helps boost the through-

put prediction accuracy under viewers’ constant motion. (3) Although not shown, the benefit

of leveraging full-body pose is similar in both simple (i.e., Personal Office and Living Room) and

complex (i.e., University Office and Meeting Room) environments. (4) Deep learning models of

prior work [5] (RNN20, RNN8, BP8) do not necessarily outperform the non-deep-learning model

(GBDT ). This is likely because those in [5] are designed for limited motion (2-DoF) as opposed to

the complex 6-DoF motion in real-world settings. We confirm that the above findings also hold

for pw=0.5s and pw=2.0s.

4.4 Reacting to Unseen Changes

In this section, we investigate how the throughput prediction models developed in §4.3 react to

changes unseen in the training data. This is an important aspect we must consider since the

changes are common in practice (e.g., new motion patterns, a chair being moved in the room,

another person passing by). We then develop solutions to tackle these changes.
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4.4.1 Measurement Methodology

Recall from §4.3.3 that we train amodel for a particular user’s motion patterns in the environment

of a particular location. Therefore, a change to any of the above factors may degrade the model’s

prediction accuracy. We first define these changes.

C1: New Location. The dimensions, interior design, and furnishings of locations differ

vastly, as do the locations of the AP and camera. These variations can significantly impact the

behavior of mmWave signal propagation [185, 168, 263, 233].

C2: New User. Users differ in their shape and height, resulting in variations of their body

poses used by the model.

C3: New Motion Patterns. Even for the same user at the same location, a new motion

pattern may lead to unseen trajectories of the head’s motion or the body’s pose.

C4: Static Environmental Changes such as furniture being moved and even small objects

being manipulated can affect the mmWave signal propagation [263, 233]. We do not consider

scenarios where, e.g., there are apparent blockages near the mmWave AP. Users should avoid

such scenarios.

C5: Dynamic Environmental Changes are similar to C4 except that the object(s) that

perturb the environment are in motion. A representative scenario is that, people as passerby(s)

or spectator(s) can temporarily block the LoS and henceforth cause a throughput drop.

We next describe how to measure the impact of the above changes. For a given change C , we

construct three datasets TB , TA, and EA
. TB and TA contain the training data before and after

C , respectively; EA
contains the testing data collected after C for evaluating the impact. We use

TB and TA to train two models MB and MA, respectively, using Seq2seq w/ Pose with the same

86



hyper-parameters. Next, we testMB andMA using EA
, and calculate the corresponding MAE as

MAEA
B and MAEA

A respectively. Then the impact of C on the throughput prediction accuracy is

calculated as MAEA
B −MAEA

A. The tradeoff here is accuracy vs. training overhead: MAEA
A gives

the best accuracy but requires retraining the model; MAEA
B reuses the old model at the cost of

degraded accuracy.

We now describe how to construct TB , TA, and EA
for C1 to C5. Recall from §4.3.2 that our

dataset is divided into (3 users) × (4 locations) = 12 groups (i.e., sub-datasets), and each group

contains traces of 10 motion patterns. Also, each group’s traces are randomly split into training

(70%) and testing (30%). Since a model is created for a given (user u, location l) pair, we measure

the impact on a per-group basis, and then average the impact across all groups. For C1, for a

given group (u, l), TB consists of the training data of (u, l); TA and EA
contain the training

and testing data of ∪l′≠l(u, l′), respectively. For C2, it is similar to C1 except that TA and EA

belonging to ∪u′≠u(u′, l). For C3, the three sets all belong to the same (u, l) pair but they contain

different motion patterns: TA contains all 10 motion patterns; we remove one motion pattern e

from TB , and only keep e in EA
. We repeat the above measurement 10 times, each time using

one of the 10 motion patterns as e. For C4 and C5, the three sets all belong to the same (u, l)

pair, but we physically introduce the environmental changes and then recollect data for TA and

EA
, as elaborated next.

We inject two static environmental changes (C4) and study them separately: (1) move four

chairs in the room to fixed places (Figure 4.5 Left), and (2) put four large packages on designated

spots. Then we ask the same users to exercise the same motion patterns (as those in TB) as if

there were no environmental change (we ensure that the changes do not block any motion pat-

tern). Injecting a dynamic change (C5) in a reproducible manner requires a more sophisticated
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Robotic Arm

ChangeChange

Figure 4.5: Static (left) and dynamic (right) environmental changes, from AP’s view.

setup. We use a robotic arm to move a box covered by aluminum foil back and forth between two

designated spots to periodically introduce NLoS (Figure 4.5 Right). The box size and aluminum

foil thickness are determined through a separate controlled experiment (see next for details) to

mimic real humans in terms of NLoS-incurred throughput degradation. In this way, we program-

matically emulate a passerby intermittently causing NLoS (demo video [43]). We study C4 and

C5 only at University Office due to setup complexity.

Details of Injecting Dynamic Change. We provide details on how to use a robotic arm

to mimic real humans in terms of NLoS-incurred throughput degradation. The idea is to find

a material/object that can incur a similar throughput drop to that caused by a real human and

is also lightweight enough for the robotic arm to carry. To achieve the above, we perform the

following experiment consisting of three steps. (1) We install the smartphone on a tripod and

fix it in LoS to the 802.11ad access point. We measure the mmWave throughput when there is

no blockage between the smartphone and AP. (2) We ask a real human (height: 1.75 m) to stand

between the smartphone and the AP to introduce NLoS and measure the mmWave throughput,

which now drops. (3) We ask our volunteer to walk away, and use the robotic arm to hold an

object at the same position where the real human stands. We make sure the object blocks the LoS

between the AP and the smartphone. We then measure the mmWave throughput and compare
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Figure 4.6: Impact of changes on the model prediction accuracy (Seq2seq w/ Pose, pw = 1 sec).

it with the measured throughput in Step (2). We want their difference to be small. We try three

objects: a paper box, a box covered by an outwear, and a box covered by aluminum foil. We find

that a box covered by aluminum foil has the most similar impact on mmWave throughput as a

real human (with an average throughput difference of 5%, or 28 Mbps). We therefore use it in our

dynamic change experiments.

4.4.2 Measurement Results and Insights

Figure 4.6 plots the impact of C1 to C5 on the mmWave throughput prediction accuracy. The

two Y axes show both the absolute MAE growth (MAEA
B −MAEA

A) and the relative growth (nor-

malized by the average 802.11ad throughput in our dataset). We highlight our findings next.

A new location incurs the highest impact. C1 degrades the model’s accuracy by 19% (93

Mbps) on average. It reveals that the physical property of mmWave and its throughput distribu-

tion in a location is the fundamental knowledge learned by our model. Since the indoor location,

characterized by its room layout, surface materials, furniture arrangement, etc. plays a dominant

role in determining the mmWave propagation, changing the location will reshape the throughput

distribution at different 3D coordinates.
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Figure 4.7: mmWave throughput drop caused by dynamic changes (C5) in our demo [43].

Anewuser incurs amoderate impact. C2 increases the averageMAE by 8% (38Mbps). The

impact is lower than that of C1, but still non-negligible. This suggests that our model also learns

how a user’s motion affects the throughput received by the headset. Changing the user alters the

relative positions among the key points used by our model; it also changes the trajectory that

the headset can reach even with the same motion pattern. Both degrade the model’s accuracy.

Nevertheless, the impact is lower than C1 because the throughput distribution, mostly shaped

by the surrounding environment, largely remains consistent.

New motion patterns and static/dynamic environmental changes may incur a small

impact. Upon C3, C4, and C5, our model’s prediction accuracy only drops marginally, by 4%,

3%, 4% (20, 17, 19 Mbps) on average, respectively. The primary reason is that the changes are

spatially small (C3 and C4) or temporarily short (C5). For C3, a new motion pattern oftentimes

has positions overlapped with old ones, making the previously learned knowledge relevant. For

our C4 instances, the moved chairs and packages usually do not incur additional NLoS. Our C5

instance does incur NLoS, but the overall impact is small due to its short duration (Figure 4.7).

Note that, however, an environmental change may cause a big mmWave performance impact
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(e.g., there are apparent blockages near the mmWave AP). Users of Habitus (and any mmWave

system in general) should avoid such scenarios.

4.4.3 Methods of Handling Changes

The results in §4.4.2 suggest that besides taking the time-consuming approach of retraining a

model from scratch, Habitus may adopt different strategies to tackle changes. We next introduce

three orthogonal mechanisms. The first two (offline/online transfer learning) adopt the concept

of homogeneous transfer learning [123, 265, 97] that transfers the knowledge learned from a past

experience to a new setting. The two properties belowmake transfer learning a desirable solution.

(1) Before and after the change, the feature space (i.e., mmWave signal strength and throughput,

6-DoF motion, full-body pose) remains the same but their distributions (or domains) may dif-

fer [265]; (2) before and after a change, there is invariant knowledge (e.g., the physical property

of mmWave and the throughput distribution in certain positions) that can be reused. The third

mechanism promptly handles C5 by fusing real-time computer vision into Habitus.

Offline Transfer Learning. For C1 and C2, given their infrequency and non-negligible

impact on themodel’s performance, collecting data under the new setting to update old the model

before using it helps mitigate large prediction accuracy drops. Specifically, when switching to a

new location or a new user, Habitus asks the (new) user to exercise motion patterns (e.g., those

in Table 4.2) in the (new) location while measuring the mmWave bandwidth and collecting input

features. A typical data collection only needs 1 to 2 minutes (see §4.7.5). Habitus then uses the

collected training data to update the old model before starting streaming for the new user or

location. Our evaluation (§4.7.6) shows that offline transfer learning reduces the model training
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time by 36% to 55% compared to building the model from scratch, which takes about 10 minutes

on a medium-end GPU for C1, C2 and requires much more training data.

Online Transfer Learning. To handle C3 to C5 (and also C1, C2), since they occur much

more frequently with usually a much smaller accuracy impact, Habitus can collect data under

the new setting and update the model on-the-fly. Unlike offline transfer learning, online transfer

learning does not incur additional data collection overhead and is transparent to users. Specif-

ically, during a streaming session, Habitus updates the model in consecutive epochs. Epoch i

produces a new modelMi and a set of training data samplesDi (input features and the measured

ground truth mmWave throughput). Habitus also maintains a global training dataset DG. At the

beginning of Epoch i, Habitus (1) sets the current model for throughput prediction to Mi−1; (2)

appendsDi−1 toDG, and start usingDG to updateMi−1; (3) start collectingDi that will be used to

updateMi in Epoch i+1. To bootstrap the above process, Epoch 0 only collectsD0 for a fixed pe-

riod of 10 secs. To avoidDG becoming too large, Habitus limitsDG to contain only data collected

in the recent 5 minutes. We tune the batch size (64) to balance each epoch’s convergence speed

and the total model copy overhead after epochs. We also apply a small learning rate (0.001) given

that we are fine-tuning the model rather than training it from scratch. Our evaluation (§4.7.6)

shows that online transfer learning can adapt to a new motion pattern or a typical static envi-

ronmental change in 32 secs and 15 secs, respectively. Meanwhile, it imposes little impact on the

model inference performance since the model is lightweight.

Vision-based Dynamic Change Handling. We find that even online transfer learning is

too slow to react to C5. We thus devise a heuristic-based design to improve the responsiveness.

The idea is to leverage the stereo camera, which already belongs to Habitus’s infrastructure, to

visually capture dynamic changes and penalize the predicted mmWave throughput accordingly.
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Specifically, we focus on the most common dynamic change: a person temporarily blocks the LoS

between the viewer and mmWave AP. During a streaming session, the edge performs continuous

human detection [26, 222, 252]. If a passerby is detected (we know the viewer’s position so the

viewer will not be confused with the passerby), Habitus uses the detected 3D bounding box, the

known position of themmWaveAP, and 6-DoFmotion reported by the headset, to determine if the

passerby is causing NLoS or may cause NLoS in the near future by examining the distance from

the bounding box center to the LoS between the viewer and AP. If so, Habitus adds an empirical

penalty to the mmWave throughput Bad predicted by the model: B′ad = −
smax−s

smax−smin
×Bad where

s is the observed signal strength; smin and smax denote the typical indoor signal strength range

(empirically set to -70 and -30 dBm, respectively). In our evaluation §4.7.6, we show that the

above approach reduces the volumetric streaming stall by 7% for C5. Meanwhile, the lightweight

human recognition model enables a high detection frequency of up to 30 FPS (we use 10 FPS in

our prototype).

4.5 System Design of Habitus

We now detail the system design of Habitus that leverages the functionalities introduced in §4.3

and §4.4 as building blocks.

As shown in Figure 4.1, except the client-side feature collector, all the other components of

Habitus reside on the edge. This helps minimize the energy consumption and heat dissipation on

client devices.
†
The choice of the edge is flexible. It can be either a user’s own desktop PC, or

an edge node co-located with a mmWave 5G base station (e.g., AWS wavelength [16]). The edge

†
For example, in our experiment, running our Seq2Seq model (§4.3.3) on the ROG phone II [176] for only two

minutes will trigger an overheating issue.
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also acts as a proxy by forwarding the client’s requests to the server and the server’s streamed

content to the client. Habitus supports both client request and server push. Our prototype uses

the former.

4.5.1 Application Interface

Habitus jointly utilizes mmWave and omnidirectional radios (802.11ad and 802.11ac in our pro-

totype) to deliver immersive content. It exposes simple interfaces to applications.

● Through a callback, Habitus keeps informing the application of the two radio links’ aggregated

bandwidth. The application should ensure that its actual streaming bitrate does not overshoot

the aggregated bandwidth. The bandwidth update is at a fast pace (e.g., 30 FPS) to match the

viewer’s fast motion.

● The application streams immersive contents on a per data block basis, which can be flexibly

defined by the application based on its semantics. Each block can be independently decoded. We

use examples in 4.5.4 to show that our block-based paradigm is aligned with the design of many

existing immersive apps (e.g., 360° videos, volumetric videos, and VR). When the client requests

for (or the server pushes) a block, it uses Habitus API to attach two parameters: the block’s

priority and playback deadline. Habitus forwards the blocks based on their playback deadline in a

FIFO manner, and distributes high-priority and low-priority blocks over the omnidirectional and

mmWave radios, respectively. The rationale is that the omnidirectional radio is more reliable, so

high-priority blocks get a higher chance of being delivered (and hence decoded and rendered)

before its deadline than low-priority blocks.
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4.5.2 Utilizing mmWave Throughput Prediction

Habitus exercises multipath content delivery in two steps. It first estimates the aggregated net-

work bandwidth by treating the multipath ac/ad connections as one logical connection. Second,

it splits the block stream over ac and ad paths. We now detail the first step, and describe the

second step in §4.5.3.

Recall that the predicted throughput of 802.11ad, denoted as Bad, can be obtained from our

mmWave throughput prediction model (§4.3, §4.4). The 802.11ac throughput, Bac, is much more

stable and largely not affected by the environment. We therefore simply use the harmonic mean

of a past window of 5 secs to predict Bac. Then Habitus predicts the aggregated capacity as

Bac+ c×Bad. We use c, which we call the trend-aware coefficient, to further enhance the 802.11ad

throughput prediction by considering the trend of a finite horizon in the future as produced by our

model (§4.3.3). The idea is to analyze the monotonic trend of the predicted throughput sequence.

If the trend is increasing (decreasing), we can use the 802.11ad link aggressively (conservatively).

To derive c, Habitus first uses Cox-Stuart Test [39, 181], a lightweight, non-parametric ap-

proach, to determine the trend (increase, decrease, or neither). The Cox-Stuart Test starts with

two statistical hypotheses: (1) H0: No monotonic trend exists in the series, and (2) HA: The

series is characterized by a monotonic trend, which is further considered as three cases, i.e.,

(a) an increase or decrease trend exists, (b) an increase trend exists, and (c) a decrease trend

exists. Mathematically, in the testing procedure, a throughput sequence Z = {z1, z2, ..., zn}

(we suppose n is an even number for simplicity) is divided into two parts {z1, z2, ..., zn
2
} and

{zn
2
+1, zn

2
+2, ..., zn}. The test statisticT (+) andT (−) is then calculated asT (+) = ∑

n
2
i=1 I(zi < zi+n

2
)

and T (−) = ∑
n
2
i=1 I(zi > zi+n

2
), respectively, where I ∈ {0,1} is an indicator function. If the null
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hypothesis H0 is true, the statistic T (+) and T (−) should obey the binomial distribution with

parameters
n
2 and

1
2 , i.e., T (+), T (−) ∼ B(

n
2 ,

1
2). Otherwise if T (+) > T (−) (or T (−) > T (+)) and

the p-value is less than a threshold (e.g., 0.05 in our case), the hypothesisHA case (b) (orHA case

(c)) is true.

c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + avg
⎛
⎝

n
2

∑
i=1

I (zi < zi+n
2
) × ∣

zi+n
2
− zi

zi
∣
⎞
⎠
, if increase trend

1 − avg
⎛
⎝

n
2

∑
i=1

I (zi > zi+n
2
) × ∣

zi+n
2
− zi

zi
∣
⎞
⎠
, if decrease trend

1, otherwise

(4.4)

Next, Habitus uses the above formula (Equation 4.4) to compute c by averaging the future

changes in the predicted throughput sequence {zi}. I(x) = 1 iff x is true (otherwise 0), and n

is the length of the predicted throughput sequence. The formula splits the sequence into two

sub-sequences in the middle, and computes the normalized increase (decrease) of the second sub-

sequence compared to the first one, on a per-element basis. The normalized changes are then

averaged. We empirically set the lower and upper bound of c to 0.5 and 1.25, respectively.

4.5.3 Multipath Scheduling

Upon receiving the block stream from the server, Habitus splits it over 802.11ac and ad paths.

Regarding the splitting mechanism, a straightforward solution is MPTCP [51] or its variants for

wireless networks [235, 69, 183]. We reject this design due to three reasons. First, MPTCP exposes

to the upper layer a single logical connection whose byte stream is delivered in-order; Habitus

instead decouples the two paths that independently deliver blocks. Second, adapting MPTCP’s
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scheduler to Habitus requires kernel modifications. Third, MPTCP is known to cause issues on

ad/ac (e.g., throughput drops over ad due to periodical network scans on ac [183]).

To avoid the above issues, Habitus establishes two single-path connections
‡
and performs

scheduling in the user space. The scheduling logic is straightforward: transmitting high-priority

and low-priority blocks over 802.11ac and ad, respectively, with the reason explained in §4.5.1.

Specifically, the server sends to Habitus’s edge node the metadata (headers) of multiple blocks

with the same playback deadline in a single bundle, followed by parallel streams of individual

blocks’ content. As the blocks’ content arrives, the edge distributes them over the two paths

according to their priority fields in the metadata and each path’s estimated bandwidth. A block

only usually uses one path, but a small number of blocks may be split over both paths if one

path’s bandwidth budget is insufficient. Once a block arrives at the client, it will be immediately

passed to the application for decoding and rendering. The server-side transmission, edge-side

forwarding, and client-side reception are pipelined.

4.5.4 Example Use Cases of Immersive Apps

Habitus can be easily integrated with a wide range of immersive applications and content formats

as exemplified below.

360° Videos. State-of-the-art 360° video systems spatially segment each panoramic video

chunk into tiles [62, 225, 260]. Tiles are selectively transmitted based on the viewport. Each tile

naturally maps to a block in Habitus, and its priority can be set to the probability that it will

appear in the viewport. Many existing systems already have this metric calculated [166, 34].

‡
Our prototype uses TCP. A better design would be using QUIC [101] to avoid head-of-line blocking across

blocks within a path under packet losses.
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Volumetric Videos. The above viewport adaptation technique and henceforth the assign-

ment of block/priority also applies to volumetric videos, where a 2D tile becomes a 3D cube con-

sisting of 3D points. Alternatively, since each volumetric frame consists of unstructured points,

it can be arbitrarily split into multiple layers each constituting a block in Habitus. A “base layer”

with a low-density point cloud can be assigned a high priority; one or more “enhancement layers”

each encompassing additional details can be assigned lower priorities.
§

Generic VR. Networked VR systems either stream raw 3D models [254, 118, 102, 258] or

rendered 2D scenes [119, 35]. Depending on the content format, a block can be either a 3D

model (or part of it) or a rendered 2D patch. The are several studies/systems on determining

the priority of VR content, such as those based on foreground/background [118, 100, 239], the

viewing distance [57, 139], and user gaze behaviors [35].

4.6 Implementation

Our implementation consists of three parts: (1) the main Habitus middleware in 3.5K LoC; (2) a

802.11 throughput measurement module plugged into Habitus; (3) two sample applications using

the Habitus API (5.2K LoC and 4.4K LoC, respectively).

The Main Habitus System is implemented in C++ and Python. We use ROG Phone II [176]

and plug it into a low-end VR headset [89] (costs $26) as the client-side device and the same server

used in §4.3.2 as the edge node. On the client side, we use Linux iw [116] to monitor 802.11 signal

strength; we use ARCore [58] for 6-DoF motion tracking (based on IMU and camera data [59]).

On the edge side, we use PyTorch-1.10.0 [163] for training and transferring our models. For

§
A similar concept called Scalable Video Encoding (SVC [186]) can be applied to 2D content, albeit at a higher

encoding overhead.
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inference, we save the models in TorchScript [210] for C++ execution. We implement the body

pose estimator over zed-openpose [253], using a pre-trained model [31, 151] to detect 2D poses.

We pipeline the body pose estimation stages (capture, 2D detection, 2D-to-3D mapping). We use

the object detection module in ZED SDK 3.8.2 [252] to detect passersby.

802.11 Throughput Measurement Module. Compared to traditional 2D video traffic, im-

mersive content traffic is highly bursty [68, 102, 35]. This poses several challenges for 802.11

(in particular, mmWave) throughput measurement. We thus implement an 802.11 throughput

measurement module using Libpcap-1.10.1 [111]. We detail its design in §4.6.1.

Two Volumetric Streaming Applications using Habitus. To demonstrate how Habitus

can benefit real immersive applications, we build two volumetric (point cloud) streaming systems

with different logic and complexity using the Habitus API. The first app (App1) employs layered

encoding of point clouds (§4.5.4) so each data block corresponds to a (frame, layer) pair. The

second app (App2) performs viewport adaptation (§4.5.4) by spatially segmenting each frame

(i.e., point cloud) into cubical cells, so each data block constitutes a (frame, cell) pair. We build

the first app from scratch in 5.2K LoC, and the second app replicating ViVo [68], a state-of-the-

art, visibility-aware volumetric streaming system. For ViVo, we only change 47 LoC for Habitus

integration. Both apps are equipped with the same bitrate adaptation algorithm whose details

can be found in §4.6.2.

4.6.1 802.11ad Throughput Measurement

Compared to traditional 2D video traffic, immersive content traffic is highly bursty. Take vol-

umetric content as an example. First, different from the traditional 2D videos that are encoded
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at a group of pictures (GOP) level, volumetric videos are typically encoded on a per-frame ba-

sis due to the difficulty of inter-frame encoding. Second, volumetric content players often apply

visibility-aware techniques [68, 166, 102, 254, 35] per frame to only download the content in-

side the viewer’s predicted viewport. To maintain accurate viewport prediction results, the client

player has to maintain a shallow buffer (e.g., 5 frames in ViVo [68]). Both factors above lead to

an extremely frequent request/reply pattern, which renders traditional throughput measurement

methods used by 2D video players (simply calculating the ratio between the video chunk size

and the chunk download time) very inaccurate. Over mmWave that offers Gbps throughput, the

inaccuracy is further deteriorated.

To address the above challenge, we adopt a cross-layer design to measure the throughput

by passively examining incoming packets containing immersive content on the client side. Our

approach works for both single-path and multipath cases. Specifically, at the application layer,

the edge explicitly informs the client how much data will be transmitted over each path before

sending data blocks belonging to each frame back-to-back. At the transport layer, the client

tracks the arrival time and TCP sequence numbers of the incoming packets. The TCP sequence

numbers indicate how much data has been received. Utilizing these information, the client-side

throughput measurement module is able to group the back-to-back packets in each “burst” as

a packet train [143, 171, 237, 250] and use their sizes and timing for throughput measurement.

Our approach disregards the ordering and duplicate of packets, and is therefore robust to packet

out-of-order and retransmission.
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4.6.2 Development of Two Sample Volumetric Streaming Applications

To demonstrate how Habitus can benefit real immersive applications, we implement two sample

volumetric content delivery applications with different logic and complexity.

App 1: Simple Volumetric Streaming. We build a simple volumetric streaming system

using the Habitus API from scratch in 5,208 LoC. It delivers the volumetric content stored on a

Linux server to an Android client over the Internet. The client player uses a shallow buffer of

5 frames (consistent with App 2) for streaming. The content format uses the layered encoding

scheme described in §4.5.4: each volumetric frame (point cloud) is split into 64 layers each con-

sisting of non-overlapped points through uniform sampling. Each (frame, layer) pair corresponds

to a data block inHabitus’s term. The priority of each block is inverse proportional to the number

of points in the block. The intuition is to prioritize streaming blocks with sparse points so that

the viewer can see the partial content as early as possible.

App 2: Visibility-aware Volumetric Streaming. We also replicate ViVo [68], a state-of-

the-art networked volumetric video streaming system. ViVo performs visibility-aware streaming

where it only fetches content falling into the viewer’s predicted viewport. In ViVo, each volu-

metric frame (point cloud) is spatially segmented into 64 cubical cells. Each (frame, cell) thus

constitutes to a data block in Habitus. The priority of a block is calculated at runtime, i.e., inverse

proportional to the Euclidean distance from the center of its cubical cell to the center of the pre-

dicted viewport. To integrate Habitus into ViVo, we only change 47 LoC that is mainly for library

initialization and blocks transmission/reception.
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For both applications, each data block is encoded into 10 quality levels with different point

density levels. Both applications use the same throughput-based adaptive bitrate (ABR) algo-

rithm [86] to determine the quality level of each data block. The bitrate selection logic works

as follows. Initially, all the to-be-fetched blocks are set to the highest quality level. The ABR

algorithm then greedily picks the block with the lowest priority and reduces its quality level by

1. The above process is repeated until the total calculated bandwidth usage does not exceed the

aggregated network capacity reported byHabitus, or all the blocks reach the lowest quality level.

4.7 Evaluation

4.7.1 Experimental Setup

Dataset, Devices, and Models. We use the dataset collected in §4.3.2 for our controlled exper-

iments. The devices are the same as those used in §4.6 and §4.3.2. In §4.7.2, we use {GBDT, BP8,

RNN8, RNN20, Seq2Seq} {w/, w/o} Pose models, and three prediction windows (pw): {0.5, 1, 2} secs.

Experiments in other sections use Seq2Seq {w/, w/o} Pose with pw=1 sec.

Controlled Experiments. To ensure the reproducibility, during our controlled experiments,

we replay the headset’s 6-DoF motion traces and the signal strength traces on the smartphone,

which is connected to the edge via real 802.11ac/ad links. On the edge side, we replay the RGB-

D videos for online full-body pose estimation. We emulate ac/ad throughput traces by Linux

tc [115]. We fix the smartphone static in LoS to the 802.11ad AP to keep a good mmWave signal

for throughput emulation. We do not add additional RTT since the client already connects to the

edge via real wireless links.
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Volumetric Videos. We use three point-cloud-based volumetric videos (denoted as V1, V2,

and V3, respectively) throughout our evaluation. {V1, V2, V3} has {2612, 2700, 3000} frames ({∼87,

90, 100} secs), respectively. Each frame of them is split into 64 data blocks (§4.5.1) and details

can be found in §4.6 and §4.6.2. All the videos are at 30 FPS, encoded into ten quality levels.

The highest bitrates are {570, 687, 738} Mbps for {V1, V2, V3}, respectively. Unless otherwise

mentioned, the results reported in the remainder of this section are generated using all three

videos.

Roadmap and Metrics. §4.7.2 evaluates 802.11ad throughput prediction error reduction

brought by full-body pose. §4.7.3 focuses on the QoE improvement brought by full-body pose.

We assess the QoE using the QoE model for point cloud from [254]. It is a linear combination of

frame quality, inter-frame & intra-frame quality switch, and stall. §4.7.4 and §4.7.7 evaluate the

end-to-end performance (quality and stall) ofHabitus. §4.7.5 conducts a user study to examine real

users’ QoE. §4.7.6 evaluates how our design handles unseen changes. §4.7.8 provides additional

micro benchmarks. Except for §4.7.7, we use App1 in §4.6 (details in §4.6.2) for evaluation.

4.7.2 802.11ad Throughput Prediction Error

Recall that in §4.3.3, we perform 10-fold cross validation for {GBDT, BP8, RNN8, RNN20, Seq2Seq}

{w/, w/o} Pose models on each {Location, User}’s dataset, with three pws {0.5, 1, 2} secs. As Fig-

ure 4.4 shows, leveraging full-body pose effectively reduces mmWave throughput prediction er-

ror for all these models, ranging from 5% (GBDT ) to 29% (RNN20) in MAE and 5% (GBDT ) to 25%

(RNN20) in RMSE, respectively.
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4.7.3 QoE over 802.11ad Network

We evaluate how full-body pose guided mmWave throughput prediction improves App1’s QoE

through controlled experiments. First, for each {Location, User}, we train a Seq2Seq w/ Pose and a

Seq2Seq w/o Posemodel, respectively. We then runApp1 over a single-path 802.11ad network. For

each data trace, we run the experiment twice, using Seq2Seq {w/, w/o} Pose model, respectively.

We log the quality for each data block (§4.7.1) and the stall for each frame to assess the QoE.

Figure 4.8 shows the QoE improvement by leveraging full-body pose for each motion pattern

across all data traces. We have two findings. First, leveraging full-body pose effectively improves

the QoE by 29% on average for all our motion patterns. Second, the QoE improvement varies

across different motion patterns, from 13.30% (S1) to 45.82% (S6). The full-body pose does not

help much for S1, S2, S8, and S9. This is due to two reasons. First, in S1 and S2, the user does not

make translational movement; this reduces the effectiveness of the pose. Second, in S8 and S9, the

LoS between the smartphone and the 802.11ad AP is well maintained; this makes the throughput

prediction easier compared to other motion patterns. Figure 4.9 presents the QoE improvement

for each location in Figure 4.3. The QoE improvement remains similar between simple (Personal

Office and Living Room) and complex locations (University Office and Meeting Room).
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Variant Predict ad? trend-aware? Scheduler

ac No N/A single-path ac

ad No N/A single-path ad

Simple No N/A ours in §4.5.3

Pro Seq2Seq w/o Pose Yes ours in §4.5.3

Full Seq2Seq w/ Pose Yes ours in §4.5.3

Table 4.3: Habitus variants.

4.7.4 End-to-end Performance of Habitus

We evaluate the end-to-end performance, including the content quality and stall, of diverse

Habitus variants using all {Location, User}’s data and App1 in §4.6.

Habitus Variants. Table 4.3 summarizes 5 Habitus variants. We consider two single-path

variants, ac and ad, that only schedule data to ac and ad, respectively, without ad throughput pre-

diction. We also consider three multipath variants, all using the multipath scheduler from §4.5.3:

the Simple variant does not utilize 802.11ad throughput prediction; the Pro and Full variant ap-

ply the Seq2Seq w/o Pose and Seq2Seq w/ Pose model, respectively, for ad throughput prediction.

Both Pro and Full enable the trend-aware feature (§4.5.2). As shown in Figure 4.10, compared

to ac and ad, Simple boosts the quality (normalized by the highest quality level) by 127.88% and

40.36%, respectively. Simple incurs a much higher stall compared to ac because the ad network is

highly fluctuating and Simple blindly uses it without predicting its future condition. Compared to

Simple, Pro boosts the quality by 7.75% and reduces the stall by 44.25%, thanks to the ad through-

put prediction and the trend-aware multipath scheduler. Compared to Pro, Full enhances the ad

throughput prediction accuracy by using full-body poses, leading to a further stall reduction of

20.55% and video quality improvement of 10.58%.

Habitus vs. Existing Approaches. We compare Habitus with MuSher [183], a recently

proposedMPTCP scheduler for ac/ad networks. Musher periodically probes the ratio between the
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current ad and ac throughput, and splits the traffic accordingly. In each probe, it tries to increase

and decrease the radio, and greedily selects the direction to move based on the aggregated ac/ad

throughput measurement. It also has a SCAN component to mitigate the negative impact of

network scanning and a BLOCKAGE component to accelerate TCP congestion window recovery

after an ad blockage event.

We implementMuSher’s scheduling algorithm in the application layer. We plug it intoHabitus

and denote it asMuSher-VR. We do not implement the SCAN component because we use establish

separate TCP connections over ac/ad links so network scans on one interface do not affect the

other one. We repeat the same experiment on MuSher-VR. As shown in Figure 4.10, compared

to MuSher-VR, Habitus (Full) significantly reduces the stall by 58.24% and boosts the quality by

18.52%. Habitus outperformsMuSher-VR due to two reasons. First,MuSher-VR incurs stalls when

it aggressively probes the scheduling ratio by scheduling more data to one path than its actual

capacity. Habitus instead takes a prediction-based approach to avoid the stall caused by aggres-

sive probing. Second, Habitus prioritizes using the ac path and opportunistically uses the ad path

if possible. In contrast, MuSher-VR lacks such prioritization. It schedules the data to the ac/ad

paths based on a calculated ratio that ideally should converge to the ratio between ac/ad through-

put. However, under the constant movement of the viewer, the actual instantaneous ratio may

significantly deviate from the calculated ratio, leading to stalls or under-utilizing the ad path.
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4.7.5 User Study

We conduct an IRB-approved user study at University Office (Figure 4.3) to assess real users’ QoE

when usingApp1 (§4.6). We recruit 12 users with various demographics.
¶
We let each user watch

a video randomly selected from our test videos and then subjectively rate thewatching experience

through 5 choices {1=very bad, 2=bad, 3=fair, 4=good, 5=very good}. Each user performs the above

assessment four times. Each time, we randomly plug a Habitus variant into App1. We consider

four variants: ad, Simple, Pro, and Full as listed in Table 4.3. Before each user’s trial begins, we

collect 2 minutes’ worth of data from the user to transfer a pre-trained model to the user. We

let the user wear a low-end VR headset [89] with a ROG Phone II plugged into it. The user can

freely make 6-DoF motions in the room during the study. As shown in Figure 4.11, compared to

{ad, Simple, Pro}, Full improves the average subjective rating by {0.83, 0.67, 0.42} (in the scale of

1 to 5), respectively. Note that the best scheme (Full) has an average rating of 3.50 (between fair

and good), likely because of the hardware limitation of the VR headset (costs $26) compared to a

full-fledged VR headset.

¶Gender : Male: 7, Female: 5; Height: <1.65m: 3, 1.65-1.75m: 5, >1.75m: 4. The subjects’ ages vary between 20

and 30. 8 out of them do not have prior experience on watching volumetric videos.
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4.7.6 Handling Unseen Changes

We evaluate the three techniques introduced in §4.4.3 for handling unseen changes. We reuse

the datasets {TB , TA, EA
} and models {MB , MA} introduced in §4.4.1. The experiments use the

Seq2Seq w/ Pose model on an NVIDIA 1660Ti GPU.

Offline Transfer Learning. For C1 and C2, we compare the training time between (1)

transferring fromMB to M̃B→A and (2) training a new model M̃A from scratch after the change.

M̃B→A and M̃A denote the transferred model and the built-from-scratch model, respectively. For

both M̃B→A and M̃A, we use p% ∈ {100,80,60,40,20}% of the samples in TA to transfer (train)

them. Their training stops when the prediction accuracy evaluated on EA
reaches MAEA

A (i.e.,

MA’s prediction accuracy on EA
). We find that the training always converges even when p is as

low as 20%. We show the measured training time in Figure 4.12, where the dashed red line marks

the training time of M̃A with p = 100%. As shown, to achieve the same evaluation accuracy,

M̃B→A significantly reduces the training time by 36% to 41% (48% to 55%) for C1 (C2) across all

five p values, compared to M̃A. In particular, training M̃B→A using only 40% (20%) of the samples

in TA is still faster than training M̃A using all the samples in TA for C1 (C2). The reason, as
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explained in §4.4.3, is that M̃B→A effectively reuses the invariant knowledge (e.g., the physical

property of mmWave and the throughput distribution in certain positions) that is already present

inMB .

Online Transfer Learning. ForC3 andC4, we measure the time consumption when M̃B→A

first converges to the target prediction accuracyMAEA
A on EA

. To accurately emulate the online

setting in a reproducible manner, when training M̃B→A, we feed TA’s data at the same pace as the

real-world training data collection rate. The results indicate that it takes on average 32 (15) secs

for the training (i.e., online transfer learning) to converge on C3 (C4), with a standard deviation

of 11 (12) secs. The convergence time includes the initial 10-sec bootstrapping (§4.4.3). Figure 4.13

shows case studies forC3 andC4. Note that without online transfer learning, the prediction error

on EA
will never decrease.

Dynamic Change Handling. For C5, we evaluate the end-to-end performance of our vol-

umetric streaming app (App1) supported by Habitus, with and without vision-based dynamic

change handling (§4.4.3). The controlled experiment is conducted over a single-path 802.11ad

network at University Office with the robotic arm. We pre-train the vision-based object detection

model in a separate experiment so the model can reliably detect the aluminum-foil-covered box
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H0
Vanilla ViVo [68] w/

single-path 802.11ad

H1
H0 and multipath

802.11ac and 802.11ad

H2
H1 and ad throughput

prediction w/o Pose

H3
H2 and ad throughput

prediction w/ Pose

Table 4.4: Apply our solution to ViVo [68]

(cumulative).

manipulated by the robotic arm (§4.4.1). We use MB as the throughput prediction model. The

results indicate that vision-based dynamic change handling reduces the stall by 7% with a video

quality reduction of only 2.2%.

4.7.7 Applying Habitus to Existing Systems

We integrateHabitus intoApp2 (ViVo [68], an existing volumetric streaming system) by changing

only 47 LoC (details in §4.6.2). ViVo adopts visibility-aware streaming by only fetching content

that will appear in the future viewport. As listed in Table 4.4, H0 is our comparison baseline:

the vanilla ViVo over single-path ad. H1 to H3 involve key components of Habitus. Figure 4.14

shows the quality and stall of H0 to H3 across our dataset. As shown, by cumulatively enabling

Habitus’s components from H1 to H3, both the average video quality and stall improve accord-

ingly. Compared to H0, H3 reduces the stall by 61% and improves the average quality by 46%. In

addition, compared to not using pose (H2), full-fledged Habitus (H3) reduces the stall by 15.75%

while slightly boosting the quality by 2.44%. The absolute stall rate of H3 is 1.67%, meaning that

the user encounters less than 0.9 secs of stall per minute on average.
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4.7.8 Micro Benchmarks and Resource Usage

We run experiments to show: (1) The GPUmemory usage (∼4.7G out of 11G on 2080Ti) ofHabitus

is acceptable. The average processing time of pose estimation and throughput prediction is 27ms

and 3.5ms on 2080Ti, respectively. (2) Compared to single-path ac, the additional energy usage

and heat increase of App1 using Habitus are only 1% and 1.3○C respectively. The details are in

the following.

Resource Usage and Processing Time. For a Habitus-enhanced volumetric content deliv-

ery system, the average CPU utilization is 36% on the client side (i.e., ROG Phone II) and 169%

(i.e., equivalent to 1.69 cores being fully utilized) on the edge side. The peak GPU memory us-

age on the edge side is 4721MiB (out of 11GB on 2080Ti) in total, including 2101MiB for video

capturing and pose estimation, 1017MiB for 802.11ad throughput prediction, and 1603MiB for

object detection. The average processing time on an NVIDIA 2080Ti GPU is 27ms and 3.5ms for

pose estimation and throughput prediction using a Seq2Seq with Pose model, respectively. The

processing time meets the system’s requirements.

Energy and Heat. To profile the energy consumption and heat increase of the client device,

we run our control experiment using V2 and {Personal Office, User 1}’s data traces repeatedly on

a ROG Phone II for 30 minutes. We use App1 (§4.6) and three Habitus variants {ac, Full,MuSher-

VR} in §4.7.4. We start each experiment on a fully-charged phone. After 30-minute running, the

battery level drops from 100% to 93% for ac, 92% for Full, and 92% forMuSher-VR, while the device

temperature rises from 30.0○C to 36.2○C for ac, from 30.5○C to 38.0○C for Full, and 30.2○C to

38.0○C for MuSher-VR. Compared to ac, the additional energy consumption and heat increase of

Full is 1% and 1.3○C , respectively. Overall, we believe the resource usage ofHabitus is acceptable.
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4.8 Summary

Limitations. First, our prototype and experiments only use 802.11ac+ad. We expect Habitus’s

high-level design to also work with other radio technologies such as 4G + mmWave 5G, but

field tests are needed to verify this claim. Second, Habitus’s reaction to unseen changes could be

further improved. We plan to employ more advanced techniques such as parameter sharing [265]

to speed up transfer learning. Third, we focus on the single-user use case. Extending Habitus to

multiple viewers will involve additional challenges such as dealing with the interplay among the

viewers.

Despite the limitations, in this chapter, we have demonstrated through a working system and

rich real-world data that, full-body-pose guided throughput prediction and joint use of omnidi-

rectional and mmWave radios can significantly improve the QoE (up to 72%) for immersive ap-

plications. Furthermore, by fusing transfer learning and vision-based object recognition, Habitus

can smoothly adapt to unseen changes.
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Chapter 5

Alice: Low-latency Image Live Co-editing via Adaptation

5.1 Introduction

In this chapter, we study another emerging networked multimedia applications, image live co-

editing.

In this paper, inspired by adaptive video streaming, we achieve low-latency image live co-

editing by incorporating extensive adaptation capabilities into the image LCE system. These

capabilities are enabled by various image edit compression and transmission strategies. The key

challenge we face, as mentioned above, is that the commonly used data-based transmission –

where the (compressed) pixel data of an edit is sent to other users – has limited adaptability due

to the mathematical constraints of lossless compression [189]. We address this challenge through

the following novel designs.

● Joint Use ofData-based andOperation-based Strategies (§5.3, §5.5.1). Our pilot study on real user

image editing patterns (§5.3) reveals opportunities to leverage an alternative strategy, referred to

as operation-based, for image edit transmission, where the editing operation’s metadata (e.g., API
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and parameters) is sent to other users, who then “replay” the edit on their local copies. To op-

timize image edit transmission, we strategically switch between data-based and operation-based

approaches based on available bandwidth and computational resources.

● Leveraging Multiple Lossless Compression Techniques with Different Configurations (§5.4,

§5.5.2). Numerous lossless compression techniques have been developed, each exhibiting sig-

nificant variability in both compression ratio and efficiency within the context of image LCE

(§5.4). To enhance the adaptability of data-based transmission, we strategically combine these

techniques and their configurations.

● Real-time Strategy Selection (§5.5.2). We develop a unified lookup table (LUT)-based approach

for rapid selection of the optimal transmission strategy, built through extensive offline profiling.

We implement the above components into Alice, a latency-aware, cross-platform image edit

transmission framework. To evaluate Alice, we integrate it into our cloud-based image LCE

testbed. Our extensive trace-driven evaluation (§5.7) demonstrates that: (1) Compared to base-

lines with fixed transmission strategies, Alice achieves up to 95% per-tile latency reduction, with

an average (median) per-tile latency of 160ms (85ms); (2) Across diverse system setups (e.g., vary-

ing tile resolutions and user counts), Alice consistently outperforms baseline strategies, delivering

28%–85% latency reduction; and (3) Alice incurs negligible overhead (< 1 ms) on commodity de-

vices (Ubuntu desktop and MacBook Air 2020).

Our contributions include: (1) To the best of our knowledge, this is the first study to focus on

low-latency image live co-editing, addressing the problem from a system perspective; (2) The de-

sign of Alice, including its hybrid transmission strategy and the LUT-based adaptation algorithm;

and (3) The implementation, integration, and thorough evaluation of Alice on our self-developed

testbed.
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Figure 5.1: The system architecture of Alice.

5.2 Alice Oveview

Alice is a cross-platform adaptation framework designed for low-latency image live co-editing.

It offers two key features: (1) a combined use of data-based and operation-based image edit trans-

mission approaches (§5.3, §5.5.1), and (2) real-time selection of the transmission strategy (§5.5.2).

Figure 5.1 illustrates the workflow of Alice, with most components operating on the client side.

In an image LCE session, user edits are encoded using Alice ’s image edit codec before being

transmitted to other users, who then decode and apply them to the shared image. The strategy

scheduler determines the compression configuration based on resource estimates (i.e., bandwidth

and computation) provided by the resource monitor. The Alice server forwards valid image edits

(after conflict management) to users.
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5.3 Understanding Real User’s Image Editing Pattern

We conduct a user study with three objectives: (1) understand real user image editing patterns, (2)

validate the tile-based image edit transmission design outlined in §2.3.1, and (3) provide additional

insights for image LCE system design.

5.3.1 Methodology

The high-level methodology of our user study is to have participants complete a series of pre-

defined image editing tasks on various pre-defined images. We use a professional image editing

tool [3] to log users’ operations and edits. Due to the complexity of implementing a professional-

grade image live co-editing tool, this study focuses on analyzing the editing patterns of individual

users instead. As shown in the previous section, these results remain valuable as they provide

insights into the editing behavior of professional creators, which, in turn, inform the design of

our Alice system. Additionally, we exclude generative AI-based image editing operations [160].

5.3.2 Results & Insights

We collect a total of 19,819 image edits performed by seven participants using 143 distinct image

editing operations with diverse parameters. We then present our analysis results and insights.

Frequencies of Image Editing Operations. Figure 5.2 presents the frequencies of image

editing operations, highlighting the 10 most common actions. We derive two key insights from

these results. First, a significant portion of image editing operations impose minimal compu-

tational overhead on the host machine, such as Layer Visibility. This suggests that instead of

relying on data-based transmission strategy, image LCE systems can transmit only the operation
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Figure 5.2: The operation frequency in our user study.

API and parameters, which typically require far less bandwidth than pixel data. Other users can

then replicate the edit by replaying the operation locally with the received parameters – an ap-

proach we refer to as operation-based transmission. Second, certain image editing operations,

such as Patch Selection, do not alter image pixels and therefore do not require transmission.

Resolutions of Image Edits. To analyze the area sizes affected by image edits, we define a set

S consisting of 7 resolutions: S = {1282,2562,3842,5122,10242,20482,40962}. The resolution

of an image edit is determined as the smallest resolution in S that fully encompasses the edit.

Our findings show that the two most common resolutions among collected image edits are 10242

and 3842. In addition, the average height and width of these edits are 660 × 660 pixels. These

results validate the design choice in basic image LCE systems (see §2.3.1), which employs a tile-based

approach for image edit transmission.

Complexity of Image Edit Tiles. We analyze the complexity of collected image edit tiles

and find that they are mathematically “simpler” than regular image tiles of the same resolution.
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The complexity of an image edit can be quantified by its entropy [189], measured as the pro-

portion of data size reduction after lossless compression. To investigate this, we segment image

edits into tiles as defined in §2.3.1, focusing on four resolutions: {1282,2562,5122,10242}. We

randomly sample 1,000 image edit tiles at each resolution and compare their complexity to an

equal number of regular image tiles, sampled from our custom dataset (discussed in §5.4.1). We

use PNG [174] for lossless compression. As shown in Figure 5.3, the average entropy of image

edit tiles at 1282, 2562, 5122, and 10242 is lower than that of regular image tiles at the same reso-

lutions by 43.13%, 42.74%, 43.46%, and 43.01%, respectively. These results confirm the simplicity

of image edit tiles. Our key insight is that, given the inherent simplicity of image edit tiles, image

LCE systems have ample opportunities to reduce end-to-end latency by employing less complex com-

pression techniques or configurations. This can significantly accelerate lossless compression while

maintaining the compression ratio.

118



5.4 Lossless Compression For Image LCE

Many lossless compression techniques [6, 174, 196, 175, 30, 7] have been developed, yet none

has been specifically investigated in the context of image live co-editing. We evaluate their per-

formance using a comprehensive dataset we collected. We collect a separate dataset instead of

reusing the one from §5.3 because we aim to investigate a broader range of image types.

5.4.1 Frameworks, Dataset & Methodology

Lossless Compression Frameworks. We explore three frameworks: a general-purpose loss-

less data compression framework, zlib [175], and two dedicated image compression frameworks,

PNG [174] and JPEG XL [6]. The reference implementations used are zlib-1.3.1 [266], libpng-

1.6.43 [112], and libjxl-0.10.0 [110]. These frameworks offer 10, 2, and 10 configurations, respec-

tively, to balance compression ratio and efficiency. In total, we examine 20 configurations: 9

from zlib, 2 from PNG, and 9 from JPEG XL. We exclude one zlib configuration that performs no

compression and one JPEG XL configuration due to excessively long compression times.

Image Tile Dataset. We construct a comprehensive image tile dataset by randomly sam-

pling a subset from multiple popular public image datasets [95, 231, 13, 14, 84, 121, 214, 44, 98].

This results in 881 images with diverse resolutions, categories, and complexities, including pho-

tographic images, photorealistic images, artistic images, AI-generated images, and simple binary

masks. Each image is then divided into tiles according to the definition in §2.3.1. We consider

four tile resolutions: {1282,2562,5122,10242}. For each resolution, we get 183K+, 47K+, 12K+,

and 3K+ tiles, respectively.
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Figure 5.4: Average compression (encoding + decoding) ratio/latency of zlib (z1-9), PNG (p1-2),

and JPEG XL (j1-9) under various image tile resolutions (left to right): 1282, 2562, 5122, 10242.

Methodology. We evaluate the compression ratio and compression latency (encoding + de-

coding) of the above frameworks with our dataset, using a single CPU thread on a MacBook

Air M1 2020 [124]. We consider both native and web (WebAssembly (Wasm) [65]) applications.

Internal parallelism in compression engines is disabled, if available.

5.4.2 Compression Performance

Figure 5.4 presents the benchmark results across diverse tile resolutions. We derive four key

takeaways: (1) zlib-{1-6} demonstrate a good trade-off between compression ratio and latency.

However, from zlib-6 to zlib-9, improvements in compression ratio become marginal, while com-

pression latency increases significantly; (2) The two PNG configurations exhibit notable differ-

ences in both compression ratio and latency; (3) JPEG XL-{1-3} provide a reasonable trade-off

between compression ratio and latency. In contrast, JPGE XL-{4-9} incur a substantial increase

in compression latency with only minimal gains in compression ratio; and (4) More importantly,

the significant heterogeneity among all configurations presents opportunities for image LCE systems

to select compression configurations at runtime to adapt to varying resource constraints.
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5.5 System Design of Alice

We now present the system design of Alice, as illustrated in Figure 5.1.

5.5.1 Hybrid Transmission Strategies

Alice combines data-based and operation-based approaches for image edit transmission. In data-

based transmission, pixel data from an image edit is sent from one user to others, with or without

lossless compression. In operation-based transmission, Alice transmits the metadata of the oper-

ation (e.g., API and parameters) from one user to others, who then replicate the edit by replaying

the operation locally with the received parameters. This hybrid approach introduces a system

compatibility challenge for Alice, which stems from two key issues. First, clients in a live co-

editing session may have different sets of image operations due to varying application versions

(e.g., across operating systems) or platform resources (e.g., native vs. web applications, laptop

vs. tablet). Second, many image editing operations rely on specific graphic assets or presets [40],

which may not be publicly available. As a result, blindly adopting the hybrid transmission strat-

egy without precautions may lead to transmission failures due to operation incompatibility or

missing graphic assets. To address this challenge, Alice enforces two policies: (1) operation-based

transmission is restricted to common operations that are supported across all variants of the im-

age LCE application. These operations can be negotiated at the start of an editing session between

remote clients; and (2) the Alice client monitors the graphic assets used in each editing operation

and switches to data-based transmission whenever private assets are involved.
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5.5.2 Real-time Strategy Selection

Alice must solve a discrete optimization problem in real time to determine the optimal transmis-

sion strategy for image edits. This problem involves a large search space, including: (1) selecting

between the operation-based and data-based approaches, and (2) choosing from all available con-

figurations of the data-based approach. There are three additional challenges: (1) measuring

the exact end-to-end latency of each configuration through actual execution is impractical, as it

would require redundant transmissions of the same image edit; (2) the selection algorithm must

be fast to prevent additional latency overhead; and (3) each LCE client must be aware of available

resources on other clients to optimally solve the problem.

Inspired by FastMPC [248], Alice overcomes these challenges by efficiently selecting the opti-

mal compression strategy at runtime using an LUT-based approach. Each Alice client maintains

two LUTs: dataLUT for the data-based approach and opLUT for the operation-based approach.

As shown in Figure 5.5, dataLUT is indexed by network bandwidth and provides the predicted

optimal data-based compression configuration along with its associated compression latency and

ratio. opLUT is a two-level LUT: the first level is indexed by the operation ID, which accesses

a sub-LUT for each image operation. The sub-LUT is indexed by specific parameters to predict

execution speed based on those parameters. At runtime, for each image edit, Alice: (1) predicts

data-based transmission latency by querying compression latency and ratio from the dataLUT,

using the latest bandwidth estimate, (2) forecasts operation-based transmission latency by com-

bining operation execution speed from the opLUT, size of the operation parameters, and estimated

bandwidth, and (3) selects the strategy with the lowest predicted latency for the image edit. Each

{platform, tile resolution} combination has its own dataLUT and opLUT, which are constructed
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Figure 5.5: An example of the dataLUT and opLUT of Alice.

offline through extensive performance profiling and enumeration, making this a one-time setup.

Next, we detail the LUT construction process.

Constructing the dataLUTs. Alice builds a dataLUT in two steps. First, it profiles the com-

pression ratio and latency of all considered compression techniques across various configura-

tions. This profiling follows the methodology in §5.4, using a comprehensive image tile dataset.

Next, Alice enumerates possible bandwidth values and selects the compression configuration that

minimizes latency for each bandwidth. The latency of each configuration is estimated using back-

of-the-envelope calculations based on the average compression ratio and latency obtained in the

first step. To optimize the dataLUTs, Alice applies several trimming strategies: (1) Initially, it pro-

files all configurations on a dataset subset before constructing the full dataLUT. It discards con-

figurations with high compression latency and limited compression ratio improvement, such as

zlib-{7-9} and JPEG XL-{7-9}, as shown in Figure 5.4; (2) Configurations that consistently perform

worse than others are removed; and (3) Instead of enumerating all possible bandwidth values,

Alice identifies a bandwidth range where each configuration performs optimally. Higher band-

width requires less compression effort for image edits, making this range easily to be identified.

Building the opLUTs. The opLUTs are constructed through extensive offline measurements

of various image editing operations, with two key differences from dataLUTs. First, Alice does
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not enumerate bandwidth values for opLUTs. Instead, it predicts operation-based transmission

latency at runtime. Second, image editing operations can have infinite possible parameter val-

ues, unlike the finite configurations in data-based transmission. Profiling every parameter set is

impractical. To address this, Alice profiles a subset of frequently used parameters, which may

include the top-k most common parameters identified from large-scale user studies. This subset

is dynamically updated as Alice collects more user operation data. In addition, each operation’s

LUT includes a default entry, which provides the average execution speed across all profiled pa-

rameter sets. If a query does not match a specific entry, Alice returns this default value. We

empirically set k to 20 to ensure fast table lookup, resulting in an opLUT size of ∼2MB (assuming

1,000 operations and each entry takes 100 Bytes).

5.6 Implementation

Our implementation consists of: (1) an image LCE system following the architecture in Fig-

ure 2.2, comprising 2,182 lines of code (LoC), and (2) the Alice framework (Figure 5.1) with 2,777

LoC, integrated into the LCE system. Both components are implemented in C/C++. We de-

velop a simple message-oriented protocol over TCP for communication between the server and

clients. For data-based transmission, Alice applies zlib-1.3.1 [266], libpng-1.6.43 [112], and libjxl-

0.10.0 [110] with configurations 1-6, 1-2, and 1-3, respectively.
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5.7 Evaluation

5.7.1 Experimental Setup

Controlled Experiments. We conduct trace-driven evaluations, where each image LCE client

is assigned an image editing trace, an uplink throughput trace, and a downlink throughput trace.

Image Editing Traces. Each data point in an editing trace includes operation metadata

(API and parameters), capturing time, and affected pixels and their values. To generate image

editing traces, we first create an operation set with 20 image processing operations fromOpenCV-

4.9.0 [150]. We consider 4 trace durations: 60, 120, 180, and 240 seconds, and synthesize 20 traces

per duration: For a t-second trace, we first determine the total number of operations n (n < t),

randomly sampled from our operation set. The capturing time for the n operations are uniformly

sampled from [0, t]. Then, for each operation, we randomly select an area from an image in our

dataset, apply the operation to that area, and record the modified pixels along with their values.

The operation parameters are randomly generated.

Network Traces. We sample network traces from the FCC mobile broadband dataset (Jan-

uary 2023) [131] and replay them usingMahimahi [145]. We use 20 uplink traces and 20 downlink

traces. The average uplink throughput ranges from 10.21 to 12.34 Mbps, with a standard devia-

tion of 10.25 to 13.02 Mbps. The average downlink throughput ranges from 64.47 to 73.51 Mbps,

with a standard deviation of 59.38 to 76.15 Mbps.

Devices, Dataset, and Other Configurations. We use an Ubuntu 18.04 desktop (64-GB

memory, Intel Core i9-10900X CPU@ 3.70GHz) as the LCE server. LCE clients run on two differ-

ence platforms, evenly distributed: an Ubuntu 20.04 desktop (32-GB memory, Intel Core i7-9700K

CPU @ 3.60GHz) and a MacBook Air 2020 laptop. We randomly select 100 images from our
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Baseline Transmission Compression

op operation-based N/A

data data-based Dynamic configuration

raw data-based No compression

zlib3 data-based zlib-3 in §5.4.1

png1 data-based PNG-1 in §5.4.1

jxl1 data-based JPEG XL-1 in §5.4.1

Table 5.1: Comparison baselines in our experiments.

dataset (§5.4.1) for evaluation and consider diverse tile resolutions (5122 and 10242) and client

scales (2, 4, 6, 8, and 10 clients).

Baselines. Weconsider 6 baselines, summarized in Table 5.1: (1) op applies only the operation-

based approach; (2) data applies only the data-based approachwith online configuration selection;

and (3) 4 data-based baselines with fixed configuration: raw applies no compression, zlib3 uses

zlib configuration 3, png1 uses PNG configuration 1, and jxl1 uses JPEG XL configuration 1.

Metrics. We evaluate Alice in terms of the per-tile end-to-end latency and its overhead. Per-

tile latency is defined as the elapsed time between when an image edit on a tile is captured and

when the tile is displayed on the other client’s device. We focus on per-tile latency because,

in our prototype, tiles are compressed and transmitted sequentially, making per-tile latency a

reasonable approximation of per-edit latency. All results are reported across all images, traces,

network traces, and clients.

5.7.2 End-to-end Performance of Alice

Alice vs. Baselines. We first compare Alice with the baselines in Table 5.1, considering 2 LCE

clients with a tile resolution of 10242. Figure 5.6 shows our result. We have three takeaways.

First, compared to raw, zlib3, png1, and jxl1, data reduces the average (median) per-tile latency by
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Figure 5.6: Per-tile latency of different image edit transmission strategies. Tile resolution is 10242.
The # of clients is 2.

90.44% (49.91%), 78.16% (9.62%), 78.30% (11.27%), and 75.31% (20.42%), respectively, thanks to the

dynamic compression configuration selection at runtime, which adapts to the varying bandwidth

better, compared to using a fixed configuration. Second, compared to data and op, Alice further

reduces the average (median) latency by 62.03% (28.34%) and 66.72% (79.09%), respectively. This

confirms the effectiveness of jointly using data-based and operation-based approaches. Third,

the average (median) per-tile latency of Alice is 160.18ms (85.01ms), which is a 95.48% (70.18%),

91.85% (60.55%), 91.49% (62.21%), and 93.17% (71.65%) reduction compared to raw, zlib3, png1, and

jxl1, respectively.

Various Tile Resolution. We repeat the evaluation with a tile resolution of 5122. As shown

in Figure 5.7: (1) compared to raw, zlib3, png1, and jxl1, data reduces the average (median) per-

tile latency by 90.44% (49.91%), 78.16% (9.62%), 78.30% (11.27%) and 75.31% (20.42%), respectively;

(2) compared to data or op, Alice further reduces the average (median) per-tile latency by 62.03%

(28.34%) and 66.72% (79.02%), respectively; and (3) the average (median) per-tile latency of Alice

is 115.06ms (58.87ms). This result confirms Alice’s effectiveness under various tile resolutions.

127



raw zlib3 png1 jxl1 op data Alice
Image Edit Transmission Strategy

100

1000

2000

3000

P
er

T
ile

E
nd

-t
o-

en
d

L
at

en
cy

(m
s)

Median Mean

Figure 5.7: Per-tile latency of different image edit transmission strategies. Tile resolution is 5122.
The # of clients is 2.

Diverse Client Scales. We vary the number of LCE clients from 2 to 10, and compare Alice

with op and data in Table 5.1. Figure 5.8 shows that when the number of clients is 2, 4, 6, 8,

and 10, Alice consistently outperforms the baselines: (1) the average (median) per-tile latency

of Alice is 160.18ms (85.01ms), 169.62ms (85.02ms), 155.36ms (84.52ms), 178.99ms (85.00ms), and

177.35ms (82.57ms), respectively; (2) Compared to data, Alice reduces the average (median) la-

tency by 83.68% (60.13%), 82.60% (65.07%), 84.70% (62.79%), 81.01% (66.08%), and 76.40% (68.88%),

respectively; (3) Compared to op, Alice reduces the average (median) latency by 52.59% (63.49%),

49.80% (63.71%), 54.00% (63.90%), 47.04% (63.72%), and 47.50% (64.64%), respectively. This result

confirms the scalability of Alice.

5.7.3 Micro-benchmarks

LUT-based vs. ML-based Selection. We compare the LUT-based strategy selection with a

machine learning-based approach (Alice-ML). Specifically, we formulate strategy selection as a

classification problem, where a machine learning model predicts the optimal strategy based on:

device type ID, tile resolution, operation ID, and bandwidth estimation. Using an offline-collected
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Figure 5.8: Per-tile latency with various # of clients. Tile resolution is 10242.

dataset, we investigate 4 lightweight ML models: Logistic Regression (LR), Random Forest (RF),

Gradient Boosting Decision Tree (GBDT), and Multi-layer Perceptron (MLP). We implement these

models using Python’s scikit-learn package with default parameters. Table 5.2 shows their pre-

diction accuracy through 10-fold cross-validation, where GBDT achieves the best performance.

We then integrate the pre-trained GDBT model into Alice-ML and compare its performance with

Alice. We set the tile resolution to 10242 and the number of clients to 2. Figure 5.9 shows that

Alice outperforms Alice-ML, reducing average (median) latency by 81.83% (56.91%). The likely

reason for Alice’s superior performance is the limited scale of the training dataset and the lack of

fine-tuning in the ML model. Nevertheless, this result demonstrates the feasibility of ML-based

solutions as an alternative approach for dynamic configuration selection, which we plan to fur-

ther explore in future work.

Alice Overhead. We confirm that Alice incurs negligible overhead (<1ms) for transmission

strategy selection on our test devices.
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Model Accuracy

LR 51.64

RF 55.91

GBDT 61.76
MLP 52.13
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Table 5.2: Prediction accuracy of explored ML

models.

Figure 5.9: Alice vs. Alice-ML. The tile resolu-

tion is set to 10242.

5.8 Summary

This chapter focuses on achieving low-latency image live co-editing. We demonstrate that by

jointly utilizing data-based and operation-based strategies and integrating diverse lossless com-

pression techniques and configurations, an image LCE system can achieve up to 95% latency

reduction compared to baselines. We believe that our high-level design concept can also benefit

human-machine co-editing applications in the Generative AI era.
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Chapter 6

NIER: Practical Neural-enhanced Low-bitrate Video

Conferencing

6.1 Introduction

In this chapter, we switch to low-bitrate video conferencing, a networked multimedia applica-

tion that is more relevant to our daily life. As mentioned in §2.4, low-bitrate video conferenc-

ing can benefit multiple stakeholders, including streaming platforms, cellular providers, mobile

customers, and end users. However, the existing SR-based low-bitrate conferencing solution is

suboptimal, due to the heavy temporal dependency introduced by traditional video codecs for

encoding low-resolution video frames.

The objective of our work in this chapter is to develop a practical low-bitrate video conferenc-

ing solution, referred to as NIER. Our design goals are: (1) adaptively maintaining a target bitrate

between 10 and 100 Kbps with reasonable video quality; (2) being robust to packet losses; and

(3) being practically deployable on commodity devices wtih a frame rate of 30+ FPS. We believe
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that satisfying these above requirements makes NIER suitable for a wide range of usage scenar-

ios, including poor wireless signal conditions, metered mobile connections, cellular roaming, and

in-flight Wi-Fi.

To achieve the above goal, we leverage a technique called key-point-based deep image ani-

mation (DIA) as a key building block. As mentioned in §2.4.1, DIA was originally designed to

animate a static image using the motion and deformation of a video clip [242, 192, 227]. Recently,

researchers in the computer vision community have explored the use of key-point-based DIA

in low-bitrate video calls [4, 153]. In this approach, motion and deformation (e.g., the optical

flow [23] between two images) are “encoded” as sparse key-points (consisting of coordinates and

attributes) transmitted from the sender. At the receiver side, these key-points are used alongside

a high-quality “reference frame” to generate corresponding frames through a pre-trained DIA

model. Compared to traditional pixel-based codecs, the key-point representation bears a much

lower bitrate. In addition, since each frame is independently encoded into key-points, packet

losses affect only corresponding frames, rather than propagating errors across multiple frames.

Despite its potential, existing studies [96, 4, 153] focus on improving key-point-based DIA

models while overlooking critical challenges in the networking and system dimensions, which

are identified by our case study in §2.4.2:

Challenge 1. When and how to transmit a reference frame? A reference frame serves a similar role

to an I-frame in traditional codecs, as it provides a more recent (and oftentimes better) “baseline”

for frame generation. However, key differences between them create unique yet underexplored

optimization opportunities – in particular, when and how to transmit a reference frame. In con-

trast, existing approaches [4, 153] typically send a reference frame only once at the beginning,

causing significant quality degradation over time.
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Challenge 2. How to adapt DIA to the fluctuating bandwidth? This can be regarded as “Adaptive

Bitrate (ABR) streaming” [25] for DIA, which is largely an uncharted territory.

Challenge 3. How to handle packet losses? Likewise, there lack methods allowing DIA to dynam-

ically adapt to varying packet loss rates, limiting its robustness in the real world.

Challenge 4. How to make DIA practical on commercial off-the-shelf (COTS) devices? Our mea-

surements indicate that state-of-the-art key-point-based DIA [193] exhibits poor performance on

COTS devices (e.g., 11 FPS with 100+ ms frame processing latency on a MacBook Air with Neural

Engine [10]), making it falling far short for practical use.

To the best of our knowledge, NIER is a first practical low-bitrate video conferencing system

enhanced by key-point-based DIA.NIERmaintains two streams between the sender and receiver:

a key-point stream and a reference stream. It achieves low bitrate by transmitting most video

frames as key-points, with adaptive reference frame delivery as needed.

● To address Challenge 1, NIER judiciously updates the reference frame by jointly considering

the bandwidth constraint and visual quality impact. A challenge here is that the visual quality

groundtruth of a to-be-generated frame is unknown. We thus devise a lightweight approach

to predict the visual quality by leveraging a new metric called self-similarity, i.e., the similarity

between a to-be-generated frame and the reference frame. We find that the self-similarity is

highly correlated with the visual quality groundtruth and can be easily derived on the sender

side, making it a good predictor. In addition, instead of discarding old reference frames, NIER

opportunistically reuses them to further boost the QoE.

● To address Challenge 2, our key insight is that the key-point stream and the reference stream,

which compete for bandwidth, exhibit distinct characteristics: the key-point stream demands

low bandwidth but requires immediate delivery, whereas the reference stream consumes high
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bandwidth yet remains delay-tolerant. NIER hence employs different strategies for them. For the

key-point stream, it adopts a layered encoding scheme that encodes the key-point data into a base

layer and three enhancement layers. At runtime, enhancement layers can be flexibly dropped to

meet the bandwidth budget. For the reference stream, NIER reshapes its traffic pattern to make

it less bursty and more elastic.

● To address Challenge 3, We make two observations: (1) similar to pixel-based videos, key-

points exhibit temporal locality; and (2) using a recent reference frame with some missing pixels

can oftentimes yield a higher generation quality than using an old non-corrupted reference frame.

Therefore, for the key-point stream, NIER applies lightweight approaches to infer the missing

key-points on the receiver side using historical data when packet loss occurs. For the reference

stream, NIER reconstructs a reference frame from partially received segments with negligible

overhead.

● To address Challenge 4, NIER applies a series of optimizations, including removing redundant

computation, pruning/modifying DNN blocks, reducing input data, and pipelining processing

stages. Many of these optimizations go beyond standard deep learning inference optimizations

by considering the unique characteristics of key-point-based DIA.

We implement the above components and integrate them into a deployable prototype com-

prising 13K+ lines of code. Our extensive evaluations indicate that NIER meets all the afore-

mentioned design goals: low bitrate, reasonable visual quality, resilience to packet loss, and high

frame rates. We highlight key evaluation results as follows.

●Under ultra-low bandwidth (< 50 Kbps) with a 50 ms one-way delay, NIER achieves 205 (225) ms

50th (95th) percentile (P50 and P95) end-to-end latency, a 99.8% (99.9%) reduction compared to a

baseline design where key-point-based DIA is applied in a straightforward manner according to
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the computer vision literature [4, 153]. In addition, NIER improves the decodable frame ratio by

11.47% under a 10% packet loss rate and improves the visual quality (in PSNR) by 2.03 dB.

● Compared to a SOTA low-bitrate video conferencing solution [195] enhanced by super resolu-

tion, NIER improves the P50 (P95) end-to-end latency by up to 98.5% (99.1%), and achieves up to

159x improvement in decodable frame ratio, with a comparable or even better visual quality.

● Compared to a SOTA loss-resilient neural codec [36] and a SOTA FEC scheme [180] for real-

time streaming, NIER exhibits much better coding efficiency, in terms of one or more metrics

(processing latency, frame rate, and data usage, etc.).

● Our IRB-approved user trial involving 20 subjects suggests that NIER outperforms other low-

bitrate video conferencing solutions, which uses H264, VP8 and super-resolution [195], by 2.0,

1.45, and 1.7 (in the scale of 1-5), respectively.

While NIER is designed for key-point-based DIA, its high-level design principles are po-

tentially applicable to other neural-based video streaming systems that involve heterogeneous

streams (e.g., [195, 36]). This study does not raise ethical issues.

6.2 NIER Overview

NIER is, to our knowledge, the first practical low-bitrate video conferencing system enhanced by

key-point-based DIA. Our high-level design concepts are potentially applicable to other neural-

based video streaming systems involving heterogeneous streams, such as Gemino [195] and

Grace [36]. As shown in Figure 6.1, it maintains two streams between the sender and the receiver:

a key-point stream and a reference stream. NIER realizes low bitrate by transmitting most of the

video frames as key-points (coordinates + attributes, §2.4.1), and generating the frames (motion
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Figure 6.1: The system architecture of NIER.

estimation + frame generation) from the key-point stream along with the reference frames from

the reference stream on the receiver side.

To address Issue 1 (§2.4.2), NIER dynamically updates reference frames. This incurs a crucial

trade-off between the video quality and bandwidth usage, which is balanced byNIER’s principled

decision-making algorithm on the sender side (§6.3.1). In addition, NIER applies a synchronized

reference pool on both sides with a least frequently used (LFU) based eviction policy and dynam-

ically assigns a best reference frame to each to-be-generated frame (§6.3.2).

To address Issue 2 (§2.4.2), NIER adopts bandwidth adaptation approaches tailored to the key-

point and reference stream, respectively (§6.3.3). For the key-point stream, we design a scalable

key-point coding (SKC) scheme to transmit the key-points as a base layer and multiple enhance-

ment layers that can be easily dropped to meet the bandwidth budget. For the reference stream,

NIER spreads out the transmission of reference frames by reshaping the traffic pattern. In addi-

tion,NIER always prioritizes sending key-point data over reference data to ensure timely delivery

of key-points.

136



To address Issue 3 (§2.4.2), both key-point and reference streams are designed to be resistant

to packet loss (§6.3.4). For the key-point stream, NIER employs lightweight approaches to infer

missing key-points on the receiver side. For the reference stream, NIER strategically splits a refer-

ence frame to multiple non-overlapped sub-images by downsampling, which are independently

encoded. This allows frame generation to use a partially received reference frame (i.e., a subset

of the sub-images) under packet losses.

Last but not least, DIA in NIER achieves line-rate ( i.e., 30+ FPS) and low latency with little

quality drop (§6.3.5), by addressing Issue 4 (§2.4.2) through three aspects: model optimization,

system-level optimization, and training optimization.

6.3 System Design of NIER

We now detail the system design of NIER (Figure 6.1) that addresses the challenges we identified

in §2.4.

6.3.1 Updating Reference Frames

To achieve a good quality of frame generation over time, NIER judiciously updates the refer-

ence frames. We face three practical challenges when designing the algorithm to make updating

decisions. First, in a video conferencing session, it is impractical to monitor the quality of the

generated frames, since they are on the receiver’s end while the corresponding ground truth

frames are on the sender’s end. Second, we need to strategically balance the trade-off between

bandwidth use and video quality. Third, there is no global view and it is difficult for NIER to

make optimal decisions.
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NIER tackles the above challenges through a principled approach that makes effective up-

dating decisions on the sender side. Our key insight is that frame generation quality is highly

correlated with the similarity between a frame and its reference frame, which we refer to as self-

similarity. This provides NIER an opportunity to make informed updating decisions: although

the quality of generated frames is difficult to track, the self-similarity of frames can easily be

derived on the sender side, as elaborated next.

The Correlation between Generation Quality and Self-similarity. We first provide for-

mal definitions of the generation quality and self-similarity of a frame f . Let the generated frame

(which is generated from the key-points of f ) be denoted as f̂ , and the used reference frame be

denoted as fR
, the generation qualityQ and self-similarity S are defined as follows, respectively:

Q = L(f̂ , f) (6.1)

S = L(f, fR) (6.2)
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Metric PSNR [76] SSIM [76] L1 Distance [15] LPIPS [259]

Medium 0.81, 0.78 0.79, 0.73 -0.76, -0.72 -0.80, -0.80

Average 0.78, 0.73 0.76, 0.71 -0.74, -0.72 -0.75, -0.75

Table 6.1: Medium and average values of (Pearson, Spearman) correlation coefficients between

generation quality and self-similarity across 40 test videos, using different metrics.

where L(⋅, ⋅) can be any metrics that reflect the pixel-level or feature-level distance between two

images, such as PSNR [76], SSIM [76], L1 distance [15], and LPIPS [259]. Figure 6.2 shows an ex-

ample illustrating the correlation between generation quality and self-similarity (in PSNR): when

the self-similarity decreases, the generation quality drops too, and vice versa. This correlation

exists because key-point-based DIA relies on the feature extracted from the reference frame fR

to generate f̂ . Therefore, a fR
that is more similar to the ground truth frame f (i.e., higher self-

similarity) can lead to a f̂ that is more similar to f (i.e., better generation quality).

We conduct a measurement study to quantitatively measure the correlation between the gen-

eration qualityQ and self-similarity S, using 40 videos from the HDTF dataset [262] and the four

different distance metrics mentioned above. For each video, we calculate the Pearson [24] and

Spearman [232] correlation coefficients between the generation quality and self-similarity of all

its frames, using the first frame as the reference frame. Table 6.1 shows the medium and average

values of (Pearson, Spearman) correlation coefficients across all our investigated videos, using

four different metrics, respectively. Note that for PSNR and SSIM, a higher value means two im-

ages are closer to each other, while for L1 distance and LPIPS, lower means closer. This explains

the positive coefficient values when using PSNR/SSIM, and the negative coefficient values when

using L1 distance/LPIPS. As shown in Table 6.1, the generation quality is indeed highly correlated

with the self-similarity, achieving high medium and average values of the (Pearson, Spearman)

correlation coefficients: (0.81, 0.78) for PSNR, (0.79, 0.73) for SSIM, (-0.76, -0.72) for L1 distance,
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and (-0.80, -0.80) for LPIPS, in terms of medium; and (0.78, 0.73) for PSNR, (0.76, 0.71) for SSIM,

(-0.74, -0.72) for L1 distance, and (-0.75, -0.75) for LPIPS, in terms of average.

Making Updating Decisions. We develop a lightweight algorithm for NIER to make updat-

ing decisions on the sender side, by leveraging the above correlation. It considers both the visual

quality and bandwidth budget. To take the bandwidth budget into account, NIER uses a refer-

ence frame update interval of r seconds as the minimum waiting time between two consecutive

reference frame updates (Condition 1). When updating a new reference frame, NIER dynamically

adjusts r as r = size
BWest−BWkp

, where size is the average encoded size of the old reference frames,

BWest is the current bandwidth estimation, and BWkp is the bandwidth reserved for streaming

key-points. When BWest ≤ BWkp, NIER stops updating reference frames until the bandwidth

permits. To consider visual quality, NIER tracks the harmonic mean [49] of self-similarity of the

previous frames within a time window of h seconds (denoted as S). It then compares the current

self-similarity S with S, and an update is allowed if S < α×S (Condition 2). NIER finally updates

a reference frame when both Condition 1 and Condition 2 are met. r is initialized to 5 seconds for

cold start, and we empirically confirm that h = 5 seconds and α = 0.98 work practically well.

6.3.2 Dynamic Reference Frame Assignment

In video conferencing using traditional video codecs, the IDR-frame [200], a special type of I-

frames, is used to refresh the decoder state by removing any previous reference frames. Intu-

itively, we expect that the reference frame in the context of NIER functions similarly to the IDF-

frame, i.e., the old reference frame is discarded when receiving a new reference frame. However,
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we observe that old reference frames can still be useful to improve frame generation quality, de-

spite a more recent reference frame. We use the video and DIA model in our case study (§2.4.2)

to demonstrate this finding. We first randomly pick three frames: Frame {1, 31, 101}, and then

generate 500 frames starting from Frame 102. We repeat the generation three times, each time

using one of Frame {1, 31, 101} as the reference frame, respectively. This allows us to identify the

optimal reference frame among our three candidates that yields the highest quality (in PSNR) for

each generated frame. Figure 6.3 shows the ratios of Frame {1, 31, 101} being the optimal refer-

ence frame. There are two observations. First, a more recent reference frame tends to achieve

a higher generation quality more frequently, confirming the necessity of updating the reference

frames. Second, the old reference frames still have a considerable amount of time, e.g.,more than

25% for Frame 31 in Figure 6.3, being the optimal one. We have similar findings using different

videos and DIA frameworks. The second observation provides NIER an opportunity to further

enhance the frame generation quality by strategically reusing the old reference frames.

Reference Pool for Dynamic Assignment. To reuse the old reference frames, NIERmain-

tains a synchronized reference pool on both the sender and receiver side. The reference pool

consists of multiple reference frames indexed by unique IDs, and its synchronization is realized
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by exchanging control messages between the sender and the receiver (e.g., using RTCP [83]). Re-

call that the generation quality is highly correlated with the self-similarity (§6.3.1). NIER thus

assigns the reference frame in the pool that achieves the highest self-similarity to each frame

encoded as key-points on the sender side. The ID of the reference frame and key-points are pack-

etized together and sent to the receiver. In the worst case where the receiver cannot find the

reference frame in its pool with the received ID, the most recent reference frame will be used. To

speed up the sender-side assignment, NIER downsamples all the reference frames in its pool to a

resolution of 64 × 64 for self-similarity calculation. We confirm that this has negligible impacts

on the assignment.

Reference PoolMaintenance. To prevent a continuous increase of the execution time of the

above algorithm, NIER sets a maximum size for its reference pool and adopts a least frequently

used (LFU) based eviction policy when the pool is full and there is a new reference frame. If

multiple reference frames have the same access frequency, they will be evicted in a first-in-first-

out (FIFO) manner. We empirically set the upper bound of the reference pool size to 20 in NIER.

6.3.3 Adapting to Fluctuating Bandwidth

The primary challenge NIER faces in bandwidth adaptation is that, the key-point and reference

streams compete the bandwidth resource with each other. Our insight is that these two streams

exhibit distinct characteristics: the key-point stream requires a constant and low bitrate, e.g.,

56.25 Kbps for 30-FPS playback (§2.4.2), and demands immediate delivery. In contrast, the ref-

erence stream is intermittent and bears a more bursty traffic pattern. For instance, in our case

study video (§2.4.2), a 512×512 reference frame, after encoding with H264, can be 31432 bytes –
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Figure 6.4: Generation quality drop under t = {1,2}-second delayed reception of the reference

frame, compared to no delays. Setup: 13 videos in §6.5.1, fixed reference update interval (every

100 frames).

130× larger than the key-point size (240 bytes per frame). In addition, the delivery of the refer-

ence frame can tolerate some delays: NIER can continue using the previous reference frame to

generate new frames without causing any video freezes, even if the new reference frame is not

immediately ready. To validate this, we apply our trained DIA model in §2.4.2 to the other test

videos in §6.5.1, where we set a fixed reference update interval (every 100 frames) and manually

delay the reception of the reference frame by t = {1,2} seconds. Figure 6.4 plots the average

generation quality drop under different delays, compared to the ideal case where the reference

frame is always received immediately. As shown, the average quality drop is indeed marginal.

Considering their unique natures, NIER tailors its bandwidth adaptation solutions to the key-

point and reference stream separately, and adopts a centralized scheduling algorithm that always

prioritizes key-point packets over reference packets.

Scalable Key-point Coding. We develop a scalable key-point coding scheme to achieve

bandwidth adaptation for the key-points. This is a similar concept as the scalable video coding

(SVC), where a frame is encoded to a base layer and multiple enhancement layers (that can be

dropped when bandwidth is not sufficient). Recall that a key-point pj consists of its coordinate
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(xj, yj) and some point-wise attributes aj (§2.4.1). A potential way to realize scalable coding is to

divide the key-points to small groups, each corresponding to a layer. However, this approach does

not work since all key-points are required for frame generation. We further find that although all

key-points are required, only their coordinates are indispensable for frame generation. Their at-

tributes can be dropped with a compromised generation quality. NIER thus performs the scalable

coding on a per key-point basis. As shown in Figure 6.5, NIER separates each key-point using a

“top-down” approach: a key-point is first separated to coordinate and attribute, represented in

single-precision floating-point numbers [122] (denoted as float32). Then, both the coordinate and

attribute are divided into two parts, by truncating the each float32 number to a brain floating-

point number [209] (denoted as bfloat16) and a 16-bit unsigned integer (denoted as uint16), as

shown in Figure 6.6. With this approach, NIER encodes the key-points of a frame to four lay-

ers as shown in Figure 6.5. Figure 6.7 shows the rate distortion (in PSNR) curve of our scalable

key-point coding scheme. As shown, each enhancement layer marginally improves the genera-

tion quality while incurring non-trivial bitrate overhead compared to the base layer. This allows

NIER to drop the enhancement layers (in the order of layer 3 to 1) to meet the bandwidth budget
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Figure 6.7: Rate distortion curve of scalable key-point coding. Setup: first 500 frames from 13

videos in §6.5.1, 10 key-points (coordinate + a 2 × 2 local affine transformation matrix), 30 FPS.

when needed. We also train a motion estimator (§2.4.1) that takes only the key-point coordinates

as its input for key-point-based DIA.

Reshaping theTraffic forReference Stream. For the reference stream, we have two design

principles: (1) keep the reference frame in a high quality, and (2) fully utilize the bandwidth

budget. Note that we keep the reference frame in a high quality because its quality can affect

the generation quality of all the future frames referring to it. Aggressively lowering a reference

frame’s quality can make it useless, i.e., leading to an even worse generation quality compared to

using an old but high-quality reference frame. NIER thus does not aggressively encode reference

frames to reduce the data size. Instead, NIER reshapes the traffic pattern of the reference stream

by spreading out each reference frame’s transmission, bringing certain delays to their delivery.

This is achieved by paced-sending reference frame packets, using a leaky bucket algorithm [146]

(details are in Algorithm 6.2).

Priority-based Scheduling. To guarantee the timely delivery of key-points while not adding

too much delay to the reference frame, NIER (1) prioritizes sending key-point base layer packets

over reference packets, and (2) drops all the key-point enhancement layer packets when there is

a pending reference frame. NIER drops the enhancement layers because they only slightly affect
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Table 6.2:Detailed Pseudo-Code forNIER’s Bandwidth Adaptation and Packet Schedul-
ing Logic described in §6.3.3.

Variables: queuekp: FIFO queue for key-point packets; queueref : FIFO queue for reference

packets; bw: bandwidth estimation in bytes per second; interval: scheduling
interval in second; lastRun: last scheduling time;

budget: budget in bytes;

1 Worker Thread PacketScheduler():
2 while not quit do
3 curRun← GetCurrentTimeInSecond()
4 newBudget← budget + (curRun − lastRun) × bw
5 maxBudget← interval × bw
6 budget←min(newBudget,maxBudget)
7 while not queuekp.Empty() and budget > 0 do
8 pkt← queuekp.Dequeue()
9 if IsBaseLayerPacket(pkt) or queueref.Empty() then
10 TransportLayerSendPacket(pkt)
11 budget← budget − pkt.Size()

12 else
13 drop pkt

14 while not queueref.Empty() and budget > 0 do
15 pkt← queueref.Dequeue()
16 TransportLayerSendPacket(pkt)
17 budget← budget − pkt.Size()

18 lastRun← curRun
19 SleepFor(interval);

the generation quality of their corresponding frames, i.e., yielding a lower utility than delivering

a new reference frame. Specifically, NIER uses a centralized packet scheduler with separate FIFO

queues for key-point and reference streams. NIER first determines a sending budget based on the

current bandwidth estimation and a sending window. It then prioritizes clearing (either sending

or droping) the key-point packet queue as far as the budget permits. Any remaining budget

is allocated to reference packets. More details can be found in Algorithm 6.2. This scheduling

algorithm also applies to other media such as audio, which has a higher priority than key-points.

146



6.3.4 Enhancing Resilience to Packet Loss

There are two common packet loss recovery solutions [48]: retransmission and forward error

correction (FEC). Retransmission incurs substantial extra latency, and FEC assumes a precise

packet loss rate estimation. In addition, both require transmitting redundant data. While they

remain applicable to NIER, they incur additional delays and bandwidth overhead. NIER instead

employs additional optimizations specific to key-point and reference streams, as elaborated next.

Inferring Missing Key-points. Recall that the key-points of a frame are encoded to a base

layer and three enhancement layers through NIER’s scalable key-point coding scheme (§6.3.3).

Each layer consumes one packet to transmit due to the small data size. NIER infers the missing

key-point packet(s) on the receiver side using lightweight approaches based on the historical

data. Specifically, when coordinate layers are missing, NIER linearly extrapolates the coordinate

from the historical trajectory. When attribute layers are lost, NIER simply reuses the most recent

attribute.

Loss-resilient Reference Frame Split. NIER encodes the reference frames using traditional

video (image) codecs, and the encoded data cannot be properly decoded when some packets are

lost. Our insights are: (1) a reference frame where some details are not in high resolution can still

be applied to frame generation, and (2) in the worst case, NIER still functions well (thanks to the

old reference frames) even if a reference frame is fully corrupted. To allow partial recovery of

received reference frames,NIER splits a reference frame intomultiple non-overlapped sub-images

by downsampling. To split a reference frame with a size of h×w into n (n = h
h0
× w

w0
) sub-images

with an equal size of h0 ×w0, the reference frame is first spatially segmented into h0 ×w0 blocks,

each consisting of n pixels with their pre-defined indices. The sub-image i is derived by sampling
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Figure 6.8: Data usage of reference split over no split.

the pixel whose index is i from each block. These sub-images are then encoded independently

and sent back-to-back. The receiver reconstructs the original reference frame by reversing the

split process. When the reference frame is partially received (i.e., some sub-images are missing),

NIER applies a 2D Gaussian filter [29] to fill out the missing pixels using their neighbor pixels in

the recovered image.

A constraint NIER must consider is the extra encoded size of the reference frame, due to its

split-then-encoding strategy. To demonstrate it, we randomly sample 1,000 frames (in 512 × 512

resolution) from our test videos (§6.5.1). We use H264 as our codec and consider splitting a

reference frame into {4, 16, 64} sub-images. Figure 6.8 shows the additional data usage of our split-

then-coding strategy. We empirically set the number of sub-images to 4 due to its low bandwidth

overhead as shown in the figure. Note that we are aware of recent advances in loss-resilient

neural codecs such as GRACE [36], which are orthogonal to our approach. We do not apply these

neural codecs in NIER due to their considerable computation overhead (see Figure 6.16), which

also competes resources with NIER’s key-point-based DIA.
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6.3.5 Accelerating Key-point-based DIA

We now describe model-level and system-level optimizations introduced in NIER.

Model Optimization. NIER accelerates the key-point-based DIA through a “top-down” ap-

proach: first optimizing the framework as a whole, and then fine-tuning each component. Recall

that a key-point-based DIA framework typically consists of three DNNs: a key-point extractor,

a motion estimator, and a frame generator (§2.4.1). We find that for the motion estimator and

the frame generator, there are redundant operations that do not need to be executed every time.

They include the feature encoding in frame generator and the reference frame pre-processing

operations in motion estimation. NIER separates these redundant operations from the motion

estimator and frame generator, and integrate them as a pre-processor, which is only executed

when a reference frame is received.

Next, wemodifiy eachDNN in the framework, respectively. To speed up the key-point extractor,

we reduce the maximum feature map size in convolution to cut down the computation overhead.

In addition, we replace the 3-channel RGB image with its grayscale version as the model’s input.

To accelerate the motion estimator, in addition to applying the same optimizations we do for the

key-point extractor, we also reduce the expansion ratio of feature map size for each convolution

layer. Furthermore, we replace the traditional residual block [72] with the more computationally

efficient inverted residual block [184]. we employ similar approaches: reducing the feature map

size and its expansion ratio, and applying inverted residual blocks. Our optimizations reduce the

processing latency per frame by ∼52% and increase the frame rate by ∼130% (see Figure 6.27).
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System-level Optimization. NIER further pipelines motion estimation and frame genera-

tion, boosting the frame rate above 30 FPS with a marginal latency increase. The overall process-

ing latency remains low (∼66 ms on an Apple MacBook Air M1 2020 as shown in Figure 6.27).

Training Optimization. We also notice that our model optimization slightly degrades the

frame generation quality. We add a reconstruction loss (L1 loss [15]) when training our DNNs.

This helps compensate for the generation quality drop incurred by our model optimization, with-

out causing extra inference overhead.

6.4 Implementation

We integrate all the components in §6.3.5 into NIER, a holistic system as shown in Figure 6.1.

Our implementation consists of 13K+ lines of code (LoC) in C/C++. For offline key-point-based

DIA model training, we implement upon the source code of FOMM [193] using Pytorch [157].

Our pre-trained models are converted to the ONNX format [148] for cross-platform execution.

NIER’s prototype consists of the NIER player and the NIER codec, as elaborated next.

The NIER Player. For NIER’s player, we begin by developing a basic video conferencing pro-

totype followingWebRTC [120], an open-source framework that enables video and audio confer-

encing atop the real-time transport protocol (RTP) over UDP. We use libdatachannel [109] as the

WebRTCnetwork library, which consists ofWebSockets,WebRTCMedia Transport, andWebRTC

Data Channels in our player for peer connection establishment, RTP/RTCP packet encapsulation,

and underlying data transmission over UDP and SCTP [199] (WebRTC Data Channels), respec-

tively. We implement all the upper layer components on our own, including (1) media data pro-

cessing components for media (video and audio) capture, encoding/decoding, (de-)packetization,
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and rendering; (2) a packet scheduler that paced-sends RTP packets using a leaky bucket algo-

rithm [146]; (3) a jitter buffer for reassembling media data packets; (4) a rate controller that adopts

Google Congestion Control (GCC) [32] and Receiver Estimated Maximum Bitrate (REMB) [158];

and (5) a NACK generator and handler for missing packets retransmission. For video and au-

dio capture, we use OpenCV 4.9.0 [149] and libsoundio [113], respectively. For traditional video

encoding and decoding, we integrate both H264 [200] and VPX [20]. For audio encoding and

decoding, we apply Opus [152]. We employ SDL3 [188] to render video and audio.

The NIER Codec. We then implement a standalone NIER codec consisting of most of NIER’s

functionalities: reference update, reference assignment with reference pool, reference frame spli-

tand reassembling, scalable key-point coding, missing key-point reconstruction, and encoding

and decoding by key-point-based DIA. The pre-trained DNN models are loaded and executed

using onnxruntime 1.17.0 [148]. We integrate the NIER codec into our player: (1) the key-point

and reference streams are transmitted using two independent WebRTC media tracks; (2) we im-

plement a packetizer tailored for NIER’s key-point data; (3) we modify the packet scheduler to

incorporate NIER’s bandwidth adaptation algorithm; and (4) we use the WebRTC Data Channel

for exchanging reference pool synchronization messages. Given the small engineering efforts

above, we believe that NIER can be easily integrated into the official WebRTC library [56].

6.5 Evaluation

6.5.1 Experimental Setup

Videos. We use the HDTF dataset [262], which contains ∼16 hours of 720p-1080p videos with

audio. Each video features an upper-torso speaker against a static background. We randomly
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select 45 videos of different subjects, and split them into training and test sets with a 7:3 ratio

(i.e., 32 for training, and 13 for test). The target resolution is set to 512×512.

Devices. We use two types of commodity devices: (1) 2× Ubuntu desktops with an NVIDIA

2080Ti GPU and 32GBmemory, and (2) 2×MacBook Air M1 2020 [10] laptops with Neural Engine

and 16GB memory. They represent mid-range PCs and laptops. The ICE [178] signaling server

runs on a separate Ubuntu desktop for peer connection setup. The access point is a TP-Link

Archer A7 [211].

Network Conditions. We consider two types of network conditions: (1) stable bandwidth

with a constant packet loss rate; and (2) fluctuating bandwidth with a constant packet loss rate.

SinceNIER is designed for low-bitrate use cases, we adopt four stable bandwidths—105, 75, 45, and

15 Kbps—following Gemino’s setup [195]. For varying bandwidth scenarios, we scale 8 broadband

traces from FCC (Jan 2023) [131] to the range of [15,105] Kbps. We evaluate six packet loss rates:

0, 0.05, 0.1, 1, 5, and 10%. The network emulation uses a one-way delay of 50 ms and a packet

queue size of 100.

Controlled Experiments. We evaluate NIER through controlled experiments. Specifically,

we setup bi-directional 1-on-1 video calls between two identical devices (either both desktops or

both laptops). Each device acts as both sender and receiver, transmitting video frames at 30 FPS

over an emulated network. Packet retransmission is disabled. For network emulation, we use

Mahimahi [145] on Ubuntu and DummyNet [173] with Packet Filter (PF) [130] on MacOS. Unless

stated otherwise, results include all test videos and devices.

Metrics. We evaluateNIER using five keymetrics: (1) visual quality is measured by PSNR [76]

and LPIPS [259], which capture pixel-level and feature-level similarity, respectively (higher PSNR

and lower LPIPS is better); (2) end-to-end frame latency is assessed at the 50th and 95th percentiles
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Figure 6.9: PSNR and P50 end-to-end latency of 4 NIER variants.

(P50 and P95), representing the time from frame capture at the sender to rendering at the receiver;

(3) decodable frame ratio under various packet loss rates; (4) video stall, defined as an inter-frame

gap exceeding 200 ms, following the industry convention [125]. We report the stall time ratio

over the total video length; and (5) encoding/decoding frame rate.

6.5.2 End-to-end Performance of NIER

We evaluate the end-to-end performance ofNIER across four variants using the abovemetrics. (1)

NIER-Naive follows the naive system design in §2.4.2 and uses our optimized key-point-based

DIA. (2) NIER-Kp builds on NIER-Naive by adding scalable key-point coding and missing key-

point reconstruction. (3)NIER-Ref extends NIER-Kp by enabling the reference stream but omits

priority-based packet scheduling. (4) NIER is our complete system, integrating all optimizations.

Visual Quality & End-to-end Latency. We first evaluate the visual quality and end-to-

end latency of the four NIER variants under stable bandwidths of 105, 75, and 45 Kbps and zero

packet loss. As shown in Figure 6.9, compared to NIER-Naive, NIER-Kp reduces P50 end-to-end

latency by 18.3%, 11.3%, and 98.5% for each bandwidth while maintaining comparable PSNR. This
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Figure 6.10: P95 end-to-end latency of NIER variants.

is achieved through scalable key-point coding scheme that allows us to adaptively drop enhance-

ment layers to meet bandwidth budgets. Compared to NIER-Kp, NIER-Ref improves PSNR by

2.72, 2.29, and 2.11 dB, respectively, due to dynamic reference frame update and assignment.

However, the PSNR gains slightly drop as bandwidth decreases because NIER-Ref adjusts its

update frequency to meet the bandwidth budget. NIER-Ref also incurs significantly higher end-

to-end latency due to the competition between the reference and key-point stream for limited

bandwidth, delaying key-point delivery. Our full-fledged NIER significantly reduces P50 latency

compared to NIER-Ref—90.3%, 97.4%, and 98.2%—while maintaining similar visual quality. This

is due to NIER ’s priority-based scheduler, which prioritizes key-point packets over reference

frames. Meanwhile, NIER also improves PSNR by 2.04, 2.03, and 1.96 dB over NIER-Kp. The

PSNR increase over NIER-Kp drops compared to NIER-Ref due to the delayed delivery of refer-

ence frames. Figure 6.10 shows that P95 latency follows the same trend as P50. We exclude results

for 15 Kbps since both NIER-Ref and NIER revert to NIER-Kp at such low bandwidths, resulting

in similar latency and visual quality.

Latency Breakdown of NIER. Figure 6.11 shows the latency breakdown of NIER on a Mac-

book Air M1, excluding in-network transmission time. The bars represent pipelined system com-

ponents. NIER achieves 33 FPS on this commodity laptop. When the network is not a bottleneck,
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Figure 6.12: Decodable frame ratio under packet losses, at 105 Kbps.

the frame rate is primarily constrained by our DIA model’s motion estimation, which takes an

average 30 ms per frame. Since NIER-Naive, NIER-Kp, and NIER-Ref use the same DIA model,

they achieve identical encoding/decoding frame rates.

Decoable FrameRatio under Packet losses. Figure 6.12 shows the decodable frame ratio of

NIER-Naive and NIER-Kp at 105 Kbps under varying packet losses. As packet loss increases from

0.1% to 10%, NIER-Kp maintains a decodable frame ratio above 99.98%+ thanks to scalable key-

point coding (SKC) and missing key-point reconstruction. In contrast, NIER-Naive experiences

a decline from 99.84% to 89.69%. Since NIER-Ref and NIER also incorporate SKC and missing

key-point reconstruction, they achieve similar decodable frame ratios as NIER-Kp. We observe

the same trend across other bandwidth conditions.
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Figure 6.13: P50 and P95 end-to-end latency under stable (105, 75, 45,15 Kbps) and varying band-

width (Vary).

6.5.3 NIER vs. Low-bitrate Schemes

We next compare NIER’s performance—including end-to-end latency, decodable frame ratio, vi-

sual quality, video stall under packet loss ( starting at 0.05%, a common rate in wild [180]), and

encoding/decoding frame rate—against three low-bitrate video conferencing solutions: (1)H264,

which uses the traditional H264 [172] codec for video coding. When H264 cannot encode the

original video within the target bitrate, we downsample the frames before encoding and upsam-

ple them via bilinear interpolation [93] after decoding. Specifically, frames are downsampled to

128×128 for bitrates below 50 Kbps and to 256×256 for bitrates between 50 and 90 Kbps. (2) VP8,

which applies another traditional codec, VP8 [20], for video coding. It uses the same adaptation

policy as H264; and (3) Gemino [195], a SOTA low-bitrate video conferencing solution enhanced

by super-resolution (SR). Gemino sends a high resolution reference frame to the receiver at the

start of the call, and then sends low resolution frames via traditional video codec. The Gemino

receiver applies SR to boost the visual quality of the low-resolution frames, along with the refer-

ence frame. Since the author does not open source their code, we replicate and train a 16x Gemino

model (i.e., upsample a 128×128 frame to 512×512) on our own, using the dataset in §6.5.1. We

use H264 [172] for encoding low-resolution frames. The trained model is converted to the ONNX

format [148] and integrated into our NIER player (§6.4).
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End-to-end Latency. Figure 6.13 presents the P50 and P95 end-to-end latency of NIER and

our comparison baselines. We set the packet loss rate to 0 and use 5 different bandwidth traces:

4 stable bandwidth at {105, 75, 45, 15} Kbps, and our 8 traces with varying bandwidth (denoted

as Vary) in the range of [15, 105] Kbps. As shown, among these 4 schemes, NIER consistently

achieves the lowest end-to-end latency across all the bandwidth conditions. Even when the band-

width is extremely low at 15 Kbps, NIER still achieves 205 (225) ms for the P50 (P95) end-to-end

latency, a 96.8% (98.1%), 97.8% (98.8%), and 98.5% (99.1%) reduction compared to H264, VP8, and

Gemino respectively. NIER’s latency increases under varying bandwidth because NIERmakes its

reference updating decision based on the current bandwidth estimation and does not consider

future bandwidth change. Meanwhile, Gemino consistently incurs a high end-to-end latency.

The reason is two-fold. First, Gemino’s SR suffers from high computation overhead and can only

achieve ∼24 FPS, as shown in Figure 6.16. Therefore, when the sender sends the video at a con-

stant 30 FPS, the frames pile up on the receiver side, waiting for SR. Second, even the entire

video can be encoded to meet the target bitrate on average, we observe the encoded sizes of the

low-resolution frames varies (as opposed to the constant key-point size per frame in NIER). As

a result, a large size frame can delay the delivery of a bunch of the following frames, especially

when the bandwidth is extremely low. For H264 and VP8, the end-to-end latency is low when the

bandwidth is sufficient. When bandwidth decreases, the end-to-end latency builds up due to the

bursty encoded video traffic produced by these traditional codecs (the same reason as mentioned

above for Gemino). VPX has a higher end-to-end latency than H264 due to its more bursty traf-

fic. Note that at 75 Kbps, the end-to-end latency of H264 is higher than that at 45 Kbps. This is

because we apply different downsampling ratios before encoding to meet the bandwidth budget

(4x at 75Kbps vs. 16x at 45Kbps).
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Figure 6.14: Decodable frame ratio under

packet losses, at 105 Kbps.

Figure 6.15: Video stall ratio under packet
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Figure 6.16: Frame rate of neural coding in Gemino [195], NIER, and Grace [36].

Decodable Frame Ratio under Packet losses. As shown in Figure 6.14, at 105 Kbps band-

width, NIER’s decodable frame ratio slightly drops from 99.96% to 99.73% when the loss rate

increases from 0.05% to 10%, consistently outperforming the other schemes: at a 0.05% (10%)

packet loss rate, NIER achieves 2.75x (530x), 1.06x (1.55x), and 2.18x (159x) average decodable

frame ratio compared to H264, VP8, and Gemino, respectively. We have similar observations for

the other bandwidth conditions.

Video Stall. Figure 6.15 reports the ratio of video stall time over the entire video duration

under packet losses at 15 Kbps. As shown, under a 10% packet loss rate, NIER only incurs 0.34%

video stall ratio (∼0.2 seconds video stall for 1-minute streaming). H264, VP8, and Gemino suffer

from significant video stall even under a 0.05% packet loss rate, making it impractical to apply

them to real-time communication. We have similar observations for the other bandwidth condi-

tions.
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(Vary).

Encoding/Decoding Frame Rate. We report frame rate of the neural coding components in

Gemino (i.e., decoding) and NIER. As shown in Figure 6.16, the Gemino’s computaionally heavy

decoding phase achieves only ∼24 FPS on our Macbook Air M1 2020 laptop, far below NIER’s ∼33

FPS.

Video Quality. Figure 6.17 show the PSNR of NIER and our comparison baselines under

packet losses, for both stable and varying bandwidth. Recall that these 4 schemes bear hugely

different decodable frame ratios under packet losses (see Figure 6.14), to fairly compare their

visual quality, if a frame cannot be decoded, we use the most recent decoded frame as the current

frame. As shown, for most of our investigated {bandwidth, packet loss rate} scenarios, NIER

achieves the highest PSNR among all the schemes. In some cases where the packet loss rate is

low (e.g., 0.05%), Gemino has a comparative (or even better) visual quality compared toNIER. This

can be attributed to the different neural-based approaches applied in NIER and Gemino: Gemino

uses the entire low-resolution frame to generate its high-resolution frame, which provides much

more information than the spare key-points used in NIER. This is also mentioned in [195]. We

report the LPIPS [259] result in Figure 6.18, which draws a similar conclusion. Considering all the

above dimensions, we believe NIER still provides the best overall QoE across all the scenarios.
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6.5.4 NIER vs. Loss-resilient Schemes

We compare NIER with two loss-resilient video conferencing solutions:

● Grace [36], a SOTA neural codec tailored for loss-resilient real-time video streaming. Grace

jointly trains a neural encoder and decoder under a spectrum of simulated packet losses, allow-

ing a graceful, less pronounced quality decrease when the packet loss rate increases. Specifically,

the encoding of Grace consists of two stages, neural encoding and entropy coding. In the first

stage, Grace applies its neural encoder to encode a frame to a tensor. The tensor is then split

into non-overlapped sub-tensors, and Grace perform entropy coding on a per-sub-tenser basis.

To decode a frame, Grace assembles the sub-tensors to a (corrupted) tensor and feeds it to its

neural decoder. We first examine the encoding/decoding frame rate of Grace’s neural encoder

and decoder. Since the authors open-source their code and pretrained models [213], we directly

convert the most lightweight one (64_freeze.model) among them to an encoder and a decoder

in the ONNX format [148], respectively. We evaluate their frame rate on our Macbook Air M1

2020. As shown in Figure 6.16, the encoding/decoding frame rate of Grace’s neural codec is far

below the linerate (i.e., 30+ FPS), achieving only ∼0.5 FPS for encoding and ∼1 FPS for decoding.

We then access the average bitrate that Grace achieves in encoding our test videos by perform-

ing both Grace’s neural encoding and entropy coding [36] on them. Our result shows that the

average bitrate across all our test videos after Grace’s encoding is 831.6 Kbps with a 48.5 Kbps
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Figure 6.19: Decodable frame ratio of Tam-
bur [180] and NIER under packet losses, at 105

Kbps.

Figure 6.20: End-to-end latency of

Tambur [180] and NIER at 105 Kbps.

standard deviation. The extremely low neural encoding/decoding frame rate and high encoding

bitrate make it impractical to employ Grace in the context of low-bitrate video conferencing on

commodity devices. We thus do not include any end-to-end performance comparison between

Grace and NIER.

● Tambur [180], a SOTA FEC scheme based on streaming codes for video conferencing. Tam-

bur also applies a machine learning model to adapt its redundancy rate based on the most recent

packet loss measurement. Compared to traditional FEC schemes, Tambur improves the decodable

frame ratio with the same amount of parity packets. We integrate the official Tambur library [180]

into our NIER player (§6.4), and enable it on top of our H264 and VP8 baselines (§6.5.3). Since the

authors do not open source their model and training dataset, we do not adaptively adjust Tam-

bur’s redundancy ratio at runtime but use two fixed ratios: 20% and 50%. We thus involve 4 Tam-

bur baselines, denoted as H264-Tambur-20, H264-Tambur-50, VP8-Tambur-20, and VP8-Tambur-50,

respectively. We set a lower target bitrate to reserve bandwidth for FEC packets, i.e.,, for the

redundancy ratio 20% (50%), we set the target bitrate to 0.8 (0.5) of the original value.

Decodable Frame Ratio. As shown in Figure 6.19, NIER consistently outperforms Tambur

under all investigated packet losses (0.05, 0.1, 1, 5, and 10%), at 105 Kbps bandwidth. We notice
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Figure 6.21: PSNR of Tambur [180] and NIER under packet losses, at 105 Kbps.

that in the low-bitrate scenario, Tambur does not appear as effective as we expect. We investigate

the FEC packets provided by Tambur and find that Tambur has a minimum packet size of 311

Bytes, which in most cases is larger than the encoded size of a P-frame in H264 and VP8 in our

setup. As a result, Tambur-20 (Tambur-50) only outputs 1 (2) FEC packet(s) for a frame whose

size is less than 311 Bytes, meaning that the protection is very limited.

End-to-end Latency. As shown in Figure 6.20, Tambur introduces substantial end-to-end

latency to our H264 and VP8 baselines at 105 Kbps bandwidth (packet loss rate is set to 0), due to

its large FEC packet size (as mentioned above).

Visual Quality. Figure 6.21 shows the PSNR of our Tambur baselines and NIER at 105 Kbps

bandwidth. As shown, though H264-Tambur-20(-50) achieves better PSNR under low packet loss

rate (i.e., 0.05%), NIER outperforms Tambur in all the other scenarios. We thus believe NIER

provides much better overal QoE for low-bitrate video conferencing compared to Tambur, con-

sidering all the above dimensions.

6.5.5 User Study

We conduct an IRB-approved user study to access real users’ QoE when using NIER. We recruit

20 users with various demographics (8 males and 12 females; Ages vary between 20 and 30). We
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Figure 6.22: Subjective ratings of 20 users.

divide them into 10 groups, each consisting of 2 subjects. We let each group do a 1-minute 1-on-1

video call on our Macbook Air M1 2020 laptops (in 2 rooms), and subjectively rate their video

call experience through 5 choices {1=very bad, 2=bad, 3=fair, 4=good, 5=very good}. Each group

performs the above assessment four times. Each time we randomly apply one of our candidates:

H264, VP8, Gemino, and NIER (details are in §6.5.3) for the video call, and we randomly pick a

bandwidth in {75, 45} Kbps. Since in our user study we also transmit users’ audio, we increase the

bandwidth by 128 Kbps (the target encoding bitrate for our audio) to make sure there is sufficient

bandwidth for audio delivery (the highest priority in our packet scheduling). We apply different

packet loss rate, {0.05, 0.1, 1, 5, 10}%, to the 10 groups. As shown in Figure 6.22, compared to

H264, VP8, and Gemino, NIER improves the subjective ratings by 2.0, 1.45, and 1.7, respectively.

VP8 outperforms Gemino in subjective rating probably due to Gemino’s substantial end-to-end

latency.

6.5.6 Micro Benchmarks and Resource usage

We run experiments to show the effectiveness of NIER’s design components, as well as NIER’s

resource usage.
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Figure 6.23: Dynamic vs. fixed refer-

ence update.

Figure 6.24: Reference pool vs. Using

the most recent reference frame.

Reference Frame Update. We compare NIER’s dynamic reference frame update with two

baselines: (1) never updating the reference frame (NoUpdate), and (2) update the reference frame

at a fixed pace (Fixed). For each video, we first apply Dynamic with 3 different minimum update

intervals r (§6.3.1): 1, 2, and 3 seconds (i.e., every 30, 60, 90 frames). We divide the number of

reference frames over the total length of the video to get an average update interval (76, 112, and

156 as shown in Figure 6.23), which is applied to run Fixed on the same video. This makes sure

Dynamic and Fixed consume the same bitrate to fairly compare them. Figure 6.23 shows that,

compared to NoUpdate, Fixed improves the PSNR by 1.81, 1.50, and 1.16, for an average update

interval (in frames) of 76, 112, and 156 frames. Dynamic further improves the PSNR by 0.19, 0.33,

and 0.51 dB, for each interval, respectively, achieving 10.72%, 22.10%, and 43.64% improvement

over Fixed.

Dynamic Reference Assignment. We compareNIER’s dynamic reference assignment (Ref-

Pool) with two baselines: (1) never updating the reference frame (NoUpdate), and (2) always using

the most recent reference frame for frame generation (MostRecent). We conduct the experiments

with three fixed reference update intervals: i.e., every 30, 60, and 100 frames. As shown in Fig-

ure 6.24, compared to NoUpdate,MostRecent improves the PSNR of the generated frames by 2.57,
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Figure 6.25: Missing key-point recon-

struction (NIER) vs. most recent frame

reuse (Reuse).

Figure 6.26: Reference split (NIER) vs.
no split.

1.86, and 1.43 dB, when the updating interval is 30, 60, and 100, respectively. RefPool further

improves PSNR by 0.28, 0.44, and 0.50 dB, for each interval, respectively, achieving 10%, 23.66%,

and 34.97% improvement over MostRecent.

Missing Key-point Reconstruction. We compareNIER’s missing key-point reconstruction

with reusing the most recent frame (Reuse) under packet losses. Specifically, we randomly drop

p% (p ∈ [0,80]) key-point packets, and compare the quality drop of NIER and Reuse caused by

packet losses. We use the first 300 frames for each of our test videos, and repeat the experiment

3 times for each p. As shown in Figure 6.25, compared to Reuse, NIER bear much less PSNR drop

under packet losses, and can reduce the PSNR drop as much as 2.5 dB (a 59.7% reduction) under

an 80% packet loss rate.

Reference Split. We compare NIER’s reference frame split (NIER) with no split (NoSplit)

under packet loss. Specifically, we randomly drop p% (p ∈ [0,10]) reference frame packet (we use

a fixed update interval of every 100 frames), and compare the quality drop of NIER and NoSplit

caused by packet losses. As shown in Figure 6.26, compared to NoSplit, NIER bear much less

drop under packet loss, reducing the PSNR drop by 0.85 dB (a 59.19% reduction), thanks to the

resilience brought by reference split.
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M1 The vanilla key-point-based DIA framework

M2 M1 and removing redundant operations

M3 M2 and optimizing Key-point Extractor

M4 M3 and optimizing Motion Estimator

M5 M4 and optimizing Frame Generator

M6 M5 and using grayscale image (except frame generation)

M7 M6 and pipelining

M8 M7 and adding reconstruction loss for training

Table 6.3: Key-point-based DIA optimizations (cumulative).
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Figure 6.27: Average latency (per frame), frame rate (FPS), generation quality (PSNR), and peak

memory usage of M1 toM8 in Table 6.3 (Apple MacBook Air M1 2020).

Effectiveness of Key-point-based DIA Acceleration. We examine the effectiveness of

each of our proposed methods for accelerating key-point-based DIA. As listed in Table 6.3, M1

denotes the vanilla DIA model (we use FOMM [193] to demonstrate) as the comparison baseline;

M2 to M8 are proposed acceleration approaches in §6.3.5. They are presented in a cumulative

fashion, i.e., Mi includes every feature of Mi−1 plus some new feature. Figure 6.27 shows the

processing latency, frame rate, visual quality (in PSNR), and peak memory usage of FOMM on a

Macbook Air M1 2020 laptop. As shown, compared toM1,M8 reduces the peak memory usage by

50%, reduces the processing latency by 34.7%, and improves the frame rate by 201%, with a slight

PSNR drop (0.82 dB). Also, each optimization (M2 to M8) individually improves one or multiple

metric(s).
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6.6 Summary

Our current design bears several limitations. First, DIA requires training and may incur distor-

tions in certain scenarios compared to traditional codecs. Note that this is a general issue for

neural codecs, and the state-of-the-art is being steadily advanced by the CV/ML community. Sec-

ond,NIER currently does not consider the scenario where multiple people appear in a frame. This

can potentially be addressed by a more advanced DIA framework and/or additional system-level

optimizations. Third, our current prototype and evaluations focus on 1-on-1 video calls. Scaling

NIER to multi-party meetings involves more sophisticated design. Fourth, following the above

points, whetherNIER can be generalized from video conferencing, whose content mostly consists

of human portraits, to general live streaming, requires more research.

Despite the above limitations, in this chapter, our work demonstrates the feasibility of build-

ing a practical neural-enhanced video conferencing system that simultaneously achieves low

bitrate, reasonable visual quality, resilience to packet loss, and high frame rates on COTS de-

vices. Our work suggests that familiar concepts in traditional multimedia systems (e.g., ABR,

multi-stream management, loss adaptation, layered coding) remain indispensable in the neural-

enhanced regime, but require a fresh revisit or even a completely new design. Thanks to these ef-

forts, our solution outperforms existing solutions in various categories (traditional video codecs,

SR, FEC, loss-resilient neural codec, etc.) in one or more core metrics.
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Chapter 7

Related Work

7.1 Volumetric Video Streaming and Super Resolution

Volumetric Video Streaming. There exist only a few studies on point-cloud-based volumetric

video streaming [64, 68, 77, 102, 75, 63, 156, 165]. For example, DASH-PC [77] extends DASH

to volumetric videos. PCC-DASH [75] is another DASH-based streaming scheme of compressed

point clouds with bitrate adaptation support. ViVo [68] introduces visibility-aware optimizations

for volumetric video streaming. GROOT [102] optimizes point cloud compression for volumetric

videos. To the best of our knowledge, there is no existing work on applying 3D SR to volumetric

video streaming.

Point Cloud SR.We classify existing work on point cloud SR into two categories: learning-

based [106, 229, 234, 249] and optimization-based [8, 79]. Most learning-based approaches follow

the workflow established in PU-Net [249], which divides a point cloud into patches, learns multi-

level point features of each patch, expands the features, and reconstructs the points from the

features. All the above methods are designed for a single point cloud; they suffer from numerous

limitations when applied to volumetric videos (§2.1.1).
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Visual Quality Assessment of Point Clouds. The state-of-the-art visual quality assess-

ment focuses on static, non-SR point clouds [45, 136, 217]. For example, using a data-driven ap-

proach, Meynet et al. [136] present a full-reference visual quality metric for colored point clouds.

Different from the above studies, we model the QoE of SR-enhanced volumetric video stream-

ing. We address new challenges on modeling the impact of various factors such as the viewing

distance, upsampling ratio, and SR incurred distortion (§3.3).

SR for Regular 2D Videos. NAS [246, 247] is one of the first proposals that apply 2D SR to

Internet video streaming. Other recent efforts on 2D SR include PARSEC [42] for 360° panoramic

video streaming, LiveNAS [91] for live video streaming, andNEMO [245] formobile video stream-

ing. In contrast, YuZu addresses numerous unique challenges (§3.1) on applying 3D SR to volu-

metric video streaming.

7.2 Immersive Content Delivery and mmWave

Immersive Content Delivery. We elaborate on some immersive content delivery systems men-

tioned in §4.5.4 (more can be found in [74]). Flare [166] and ViVo [68] apply viewport adaptation

to optimize mobile 360° and volumetric videos streaming, respectively. M5 [258] investigates

volumetric video streaming using adaptive mmWave beamforming. InstantReality [35] intro-

duces a perceptual-aware approach to enhance VR media streaming. As a middleware frame-

work, Habitus can be integrated into most of the above systems to enhance the application QoE

(we have conducted a case study for ViVo in §4.7.7). Also note that Habitus is orthogonal to some

VR systems (e.g., MoVR [2]) that enhances the PHY layer (§4.1).
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mmWave Throughput Prediction. Recent measurement studies have explored the feasibil-

ity of predicting mmWave throughput for various radios, such as commercial mmWave 5G [142],

802.11ad [5], and 802.11ay [237]. Lumos5G [142] establishes a composable machine learning

framework to predict mmWave 5G throughput. Wu et al. uses Markov chain to predict the link

quality of 802.11ay, based on the headset’s motion data [237]. Aggarwal et al. conducts a mea-

surement study on using a smartphone’s motion sensor data to predict 802.11ad throughput [5].

They only consider 2-DoF (with a radio mounted on a guided rail) and LoS scenarios. None of

the above studies employs the full-body pose, which we found to be an important feature for

improving the prediction accuracy. Also, none of them conducts in-depth investigations on how

to handle unseen changes as we do.

Multipath TCP Support for 802.11ac/ad. Despite a plethora of works on WiFi/cellular

multipath [69, 235, 264], there are only a few studies on dual-band 802.11ac/ad multipath net-

working. MUST [201] predicts the best 60GHz beam and PHY rate setting, and switches between

ac/ad links accordingly. We discussed MuSher [183], an MPTCP scheduler for 802.11ac/ad and

compared it with Habitus in §4.7.4. Compared to the above works, Habitus is an application-layer

solution designed specifically for immersive content delivery.

Improving mmWave Network Performance at PHY layer. There is rich literature on

improvingmmWave performance at the PHY layer, such as efficient beam selection [226], LiDAR-

assisted beam management [233], and beam relay through smart metasurface [38], to name a

few. Unlike the above, Habitus aims at optimizing the upper-layer network protocol stack for

immersive content delivery without requiring modifying PHY-layer protocols.
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7.3 Reducing Latency in Multimedia Streaming

Reducing Network-side Delay. There is extensive research on reducing network-side latency

for various applications [133, 223, 204]. For example, Zhuge [133] reduces tail latency in wireless

real-time communication (RTC) applications by proactively predicting network delay for each

RTC packet and adjusting the packet sending rate accordingly. TwinStar [223] achieves low-

latency video delivery by leveraging multiple network paths simultaneously to mitigate network

jitter over a single path. Tan et al. [204] propose a data-driven LTE latency reduction framework

for latency-sensitive mobile applications by analyzing operational LTE traces.

Adaptive Streaming. Adaptive bitrate (ABR) streaming is widely adopted in modern multi-

media systems [197, 166, 68, 254], ranging from 2D videos to immersive content. The core concept

is to encode multimedia content at multiple quality levels and stream the highest possible qual-

ity that matches the current network bandwidth [197, 254], ensuring timely delivery before the

playback deadline. Some immersive video streaming systems [166, 68] adopt visibility-adaptive

streaming, transmitting only content visible to the viewer. Machine-oriented systems, such as

connected autonomous vehicles [261] and video analyst systems [92], dynamically adjust encod-

ing parameters to adapt to fluctuating network conditions.

Optimizing Lossless Compression. A wide range of lossless compression techniques [6,

174, 196, 175, 30, 7] have been developed over the past decades. In addition, research has fo-

cused on accelerating existing frameworks [236, 191]. Wu et al. [236] propose an entropy-guided,

content-aware pixel prioritization strategy to enhance the progressive compression performance

of FLIF [196]. Shen et al. [191] optimize FLIF by leveraging GPU parallelism to accelerate com-

pression. These studies are orthogonal to our work in Chapter 5.
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7.4 Video Conferencing and Deep Image Animation

Low-bitrate Video Conferencing. There have been some studies on low-bitrate video confer-

encing. We elaborate Gemino [195] in §6.5.3. Wang et al. [224] achieves low-bitrate video calls by

sending facial landmarks to the receiver, which applies affine transformation to the received facial

landmarks along with a reference image to generate target frames. Agarwal et al. [4] and Oquab

et al. [153] also achieve low bitrate by “encoding” video frames as key-points, using the deep im-

age animation technique. However, they focus on improving the DIA models while overlooking

the unique challenges in the networking and system dimensions.

Loss-resilient Real-time Streaming. Many recent studies [134, 180, 53, 107] have focused

on loss-resilient real-time streaming. We elaborate Grace [36] and Tambur [180] in §6.5.4. Hairpin

[134] optimizes retransmission and FEC strategies using a Markov decision process to minimize

deadline misses and bandwidth costs. Salsify [53] integrates a video codec and transport pro-

tocol to adaptively mitigate packet loss and queueing delays. Reparo [107] leverages generative

deep learning to reconstruct lost frames and enhance video quality. Despite these advancements,

challenges such as computational cost, scalability, and bandwidth overhead limit their practical

applicability in low-bitrate video conferencing.

Deep Image Animation. In recent years, researchers in the computer vision community

have proposed various deep image animation models [192, 193, 194, 227, 117]. Monkey-Net [192]

and FOMM [193] adopt deep neural models to animate a static image based on a reference image

and sparse key-points extracted from a driving video. UVA [194] further improves the motion

estimation, and uses motion disentanglement to enhance the quality of the generated images.

Face-vid2vid [227] synthesizes the talking head based on the 2D one-shot reference. It extracted
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the 3D key-point representation of a talking head to render novel-view images. Liu et al. [117]

further incorporates the semantic information in image animation. Mallya et al. [127] proposes

a cross-modal attention layer to identify correspondences between source and driving images,

selecting and warping the most appropriate features.
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Chapter 8

Conclusion and Future Work

My dissertation is dedicated to boosting the quality-of-experience (QoE) of emerging networked

multimedia applications on existing network infrastructures through principled system designs,

by addressing two major challenges: the evolution of existing network infrastructures worldwide

lags behind the fast growth of multimedia traffic over the Internet, while each application exhibits

unique characteristics in terms of data representation, resource requirements, and QoE assess-

ment. In a word, the principled approach to enhancing QoE can be summarized as: developing

adaptive, robust, and resource-efficient multimedia systems through innovative codecs, cross-

layer optimizations, and user-centered QoE metrics, backed by solid prototyping and real-world

evaluation. To explain, it includes:

● Exploring innovative coding schemes for multimedia content;

● Enhancing adaptability and robustness for streaming multimedia data under fluctuating net-

work conditions;

● Conducting user studies to understand real users’ QoE expectations for various applications;

● Leveraging cross-layer design;
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● Seeking co-existence with commodity network infrastructures and minimizing the deployment

effort.

I demonstrate how the principle can be applied and its effectiveness through in-depth stud-

ies of four representative networked multimedia applications: volumetric video streaming, gen-

eral mobile immersive content delivery, image live co-editing, and low-bitrate video conferencing,

where I design, implement, and thoroughly evaluate four innovative systems and frameworks,

referred to as YuZu, Habitus, Alice, and NIER, each significantly improving users’ QoE for its

corresponding application. Specifically, to the best of my knowledge: YuZu is the first super-

resolution-enhanced, QoE-aware volumetric video streaming system; Habitus is the first soft-

ware framework aimming at optimizing the upper-layer network protocol stack for immersive

content delivery (and metaverse applications in general); Alice is the first cross-platform com-

pression adaptation framework for achieving low-latency image live co-editing under fluctuat-

ing network/computation resources; andNIER is the first practical low-bitrate video conferencing

system enhanced by the key-point-based deep image animation technology and is suitable for a

wide range of usage scenarios, in particular over challenging/metered networks.

I believe that my studies with the above applications, especially the principled approach, pro-

vide insights for a broader range of novel networked multimedia applications and can be easily

adapted and applied to their system design and optimization.

8.1 Future Work

In the course of my research, I have noticed several limitations of my current work, such as the

generalization concern for neural-based coding schemes, the potential issues when extending
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some of the systems to multi-user use cases, and the requirement for accurate network condition

estimation. In the near future, I am interested in further leveraging the aforementioned principle

and diving deeper into networked multimedia system research, as elaborated in the following:

Toward Higher Generalizability. Several of my research works apply deep neural network

models as the key building block to improve QoE for networked multimedia applications: YuZu

leverages the super resolution (SR) technology to reduce the bandwidth requirement for stream-

ing volumetric videos, Habitus uses Seq2Seq models to predict future mmWave throughput, and

NIER adopts key-point-based deep image animation (DIA) models to achieve low-bitrate video

conferencing. However, there are concerns about the generalizability (or performance drop) of

DNN models at runtime, especially when processing the unseen data in the training dataset. For

example, YuZu requires training SR models for each volumetric video, whileNIER focuses on cer-

tain video conferencing scenarios (i.e., a talking human with the upper body). In my future work,

I plan to further enhance the generalizability of neural-based coding schemes, through three or-

thogonal directions: developing more advanced DNN models, leveraging transfer learning as we

do when developing Habitus (Chapter 4), and exploring more sophisticated system designs.

Toward Higher Scalability. Though significantly boosting the QoE, some of my current

works, such as Habitus (Chapter 4) and NIER (Chapter 6), focus on single-user or 1-on-1 video

call use cases. Scaling these systems to multi-user use cases faces non-trivial challenges: when

using Habitus, co-located users can impact the mmWave signals and thus the QoE of immersive

content delivery among one another; and multi-party meeting may hugely increase the compu-

tation overhead for DIA models. In my future work, I plan to enhancing the scalability of these

systems by addressing the above challenges through two orthogonal directions: developing more

advanced DNN models, and involving additional system-level optimizations.
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Toward Accurate Network Condition Estimation. To achieve adaptability, all networked

multimedia systems rely on an accurate estimation of network condition (e.g., bandwidth and

packet loss rate). Nevertheless, throughout my research, I find that the current network condition

estimation are still in their infancy, which severely degrades the QoE improvement brought by

the optimizations in the other layers. In my future work, I plan to conduct research studies on

network condition estimation over existing and future network infrastructures, with the ultimate

goal of developing a unified and deployment-ready estimation framework that can benefit all

networked multimedia systems.
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